Methods to get the probability of a changepoint in a time series.

Overview

Bayesian Changepoint Detection

Methods to get the probability of a changepoint in a time series. Both online and offline methods are available. Read the following papers to really understand the methods:

[1] Paul Fearnhead, Exact and Efficient Bayesian Inference for Multiple
Changepoint problems, Statistics and computing 16.2 (2006), pp. 203--213

[2] Ryan P. Adams, David J.C. MacKay, Bayesian Online Changepoint Detection,
arXiv 0710.3742 (2007)

[3] Xuan Xiang, Kevin Murphy, Modeling Changing Dependency Structure in
Multivariate Time Series, ICML (2007), pp. 1055--1062

To see it in action have a look at the example notebook.

Comments
  • Other observation models besides Gaussian

    Other observation models besides Gaussian

    Hi. I was wondering if you had any insight in extending your code to include other emission models besides gaussian. In particular, how about a GMM with known number of gaussians?

    I was going to take a stab at implementing it and submit a PR, but wanted to get your input first.

    Thanks

    Dan

    enhancement 
    opened by mathDR 16
  • CD automation for deployment to PyPI

    CD automation for deployment to PyPI

    What is this feature about? CD for deploying package to PyPI. It makes use of Github's workflow.

    Closes Issues: https://github.com/hildensia/bayesian_changepoint_detection/issues/32

    Pre-req for owner @hildensia before merging this :

    1. Create a new API tokens inside your PyPI account where this project lives https://pypi.org/
    2. Creating two Repository secrets inside the github project setting. (Steps defined here) A. Secret name PYPI_USERNAME which value __token__
      B. Secret name PYPI_PROD_PASSWORD with the token value from step #1

    How to release a package? Leveraging github release feature This can only be done by project admin/maintainer. @hildensia Right now have made the release to based on manual action. We have to make use the of Releases option shown by github, provide a version tag number and description. If we want to change the release strategy we can update the cd.yml accordingly but usually I have seen projects follow manual release.

    What Testing was done? I have tested this pipeline where the package was deployed to my Test PyPI account. https://github.com/zillow/bayesian_changepoint_detection/actions/runs/1966108484

    opened by shahsmit14 12
  • Add pyx file again

    Add pyx file again

    Was removed during a PR. Is there a good way to keep cython and python in sync. I'm not sure if I prefer one over the other (python is better for debugging, cython is faster).

    opened by hildensia 5
  • How to utilize R matrix to detect change points?

    How to utilize R matrix to detect change points?

    In the current version of code, Nw=10; ax.plot(R[Nw,Nw:-1]) is used to exhibit the changpoints. Although it works fine, I am really confused about the moral behind it. I tried to plot the run length with maximum prob in each time step i.e. the y index of maximum prob in each x col, but the result showed the run length keeps going up... I also went back to Admas's paper but found nothing about change point indentification stuff (he just stop at R matrix)... I also tried to find Adams's MATLAB code, but the code seems to have been removed...

    I am trying to use this method in my work, and I believe it's the best to fully understand it before any deployment. Any help will be appreciated and thanks a lot!

    opened by mike-ocean 4
  • Corrected scale and beta factor calculation

    Corrected scale and beta factor calculation

    The scale factor should be the standard deviation. There was a small bug in the betaT0 calculation, this makes it consistent with the paper/gaussdemo.m file.

    opened by nariox 3
  • Example notebook does not work

    Example notebook does not work

    If I click on the "example notebook" work - an nbviewer link - I get a "too many redirects" error.

    It would be nice if the example notebook was easily accessible in the repo (maybe I overlooked it... ) because we don't need a live notebook / nbviewer to figure out whether the example fits our use case.

    opened by chryss 2
  • Updating parameters for bayesian online change point

    Updating parameters for bayesian online change point

    I think my question is related to the one, which was not answered and is already closed: https://github.com/hildensia/bayesian_changepoint_detection/issues/19

    In your example, you have applied the student t-distribution as a likelihood. I understand the distribution, its parameters, but I have a question about how you set up prior and update its parameters in the code. So the following is:

    df = 2*self.alpha
    scale = np.sqrt(self.beta * (self.kappa+1) / (self.alpha * self.kappa))
    

    I don't understand what alpha, beta and kappa correspond to. How have you come across this expression? The paper by Adams and McKey refers to updating sufficient statistics. Is your expression related to that? If so, how can I do that for any other distribution, let's say gaussian? In my comment, I refer to the following formula in the paper:

    equation

    opened by celdorwow 2
  • Scipy Import Error on newer versions

    Scipy Import Error on newer versions

    Hi guys,

    there is an import issue if one uses newer scipy versions.

    Would be a quick fix if you adapt the import statement at offline_changepoint_detection.py

    try:  # SciPy >= 0.19
        from scipy.special import comb, logsumexp
    except ImportError:
        from scipy.misc import comb, logsumexp  # noqa
    
    opened by fhaselbeck 2
  • Multivariate T

    Multivariate T

    • Introduces a pluggable prior/posterior config for multivariate Gaussian data, with sensible defaults. Note that this only works for scipy > 1.6.0, where they introduced the multivariate t PDF. The library will remind you to upgrade if you have an old version.
    • Adds a test for this new configuration, as well as for the univariate one
    • Adds a "dev" and "multivariate" setup extra, meaning that you can pip install bayesian_changepoint_detection[dev] for development work (currently this installs pytest), or pip install bayesian_changepoint_detection[multivariate] (enforces that you have a new enough scipy version for this new feature)
    opened by multimeric 2
  • Why the probability exceeds one?

    Why the probability exceeds one?

    I ran the given online detection example in the notebook, and I assumed the y axis indicating the probability of changepoint (am I right?). But the y value ranged from zero to hundreds. I am not very familiar with the math, so can anyone please explain this outcome?

    Thanks.

    opened by mike-ocean 2
  • Fix full covariance method and add example

    Fix full covariance method and add example

    This fixes the full cov method and adds an example similar to the original ipython notebook. If you prefer, I can merge them separately, but since they are related, I thought it'd be fine to merge them together.

    opened by nariox 2
  • About the conditions to use bocpd

    About the conditions to use bocpd

    Hi,nice to meet you,and i want to aks a basic question,if i don’t know the distribution of data(not the normal distribution),then could i use the bocpd? Thank you!

    opened by Codergers 0
  • Scaling of Data

    Scaling of Data

    Hi, I've noticed is the scaling of the data can have an effect on the result, but I am not sure why it would and can't find any reason for it in the code or references. Below I have the CP probabilities for the same data with or without a constant factor, which are somewhat different.

    Are there some assumptions about the input data I am missing? Thanks

    image image

    opened by stefan37 3
  • How to adjust the sensitivity of the BOCD algorithm?

    How to adjust the sensitivity of the BOCD algorithm?

    There is always a tradeoff between false alarms and missed alarms, and when the algorithm is more sensitive we should have higher false alarm rate and lower missed alarm rate. My question is, is it possible to adjust the sensitivity level of this algorithm by changing the hyperparameter (e.g., alpha, beta, kappa, mu)? Thank you!

    opened by gqffqggqf 4
  • 'FloatingPointError: underflow encountered in logaddexp'  occurs when setting np.seterr(all='raise')

    'FloatingPointError: underflow encountered in logaddexp' occurs when setting np.seterr(all='raise')

    Hi,

    I installed bayesian_changepoint_detection from this github repository.

    By setting (accidentally) np.seterr(all='raise'), I was able to cause the following exception.

    I am not sure whether this would have any relevance for the further processing, but I just wanted to draw attention to people working on / with this library.

    /home/user/venv/env01/bin/python3.6 /home/user/PycharmProjects/project01/snippet.py
    Use scipy logsumexp().
    Traceback (most recent call last):
      File "/home/user/PycharmProjects/project01/snippet.py", line 68, in <module>
        Q, P, Pcp = offcd.offline_changepoint_detection(data, partial(offcd.const_prior, l=(len(data) + 1)), offcd.gaussian_obs_log_likelihood, truncate=-40)
      File "/home/user/experiments/original-unforked/bayesian_changepoint_detection/bayesian_changepoint_detection/offline_changepoint_detection.py", line 98, in offline_changepoint_detection
        Q[t] = np.logaddexp(P_next_cp, P[t, n-1] + antiG)
    FloatingPointError: underflow encountered in logaddexp
    
    Process finished with exit code 1
    
    
    opened by alatif-alatif 0
  • Added Normal known precision, Poisson distributions + alternate hazard function

    Added Normal known precision, Poisson distributions + alternate hazard function

    For someone whoever is interested, I have added Normal known precision, poisson distributions in my fork below. Also tried adding another type of hazard function which is normally distributed over time. Usage of the same is updated in Example code as well. Find my fork here - https://github.com/kmsravindra/bayesian_changepoint_detection

    opened by kmsravindra 2
  • Confused about the R matrix interpretation

    Confused about the R matrix interpretation

    Hi,

    I am confused about the returned R matrix interpretation in the online detection algorithm. In the notebook example, the third plot is R[Nw,Nw:-1], where it is mentioned to be "the probability at each time step for a sequence length of 0, i.e. the probability of the current time step to be a changepoint." So why do we choose the indices R[Nw,Nw:-1] ? why not R[Nw,:]

    Also, it was mentioned as an example that R[7,3] means the probability at time step 7 taking a sequence of length 3, so does R[Nw,Nw:-1] means that we are taking all the probabilities at time step Nw ?

    Any suggestions to help me to understand the output R ?

    Thanks

    opened by RanaElnaggar 4
Releases(v0.4)
Owner
Johannes Kulick
Machine Learning and Robotics Scientist
Johannes Kulick
CLIP + VQGAN / PixelDraw

clipit Yet Another VQGAN-CLIP Codebase This started as a fork of @nerdyrodent's VQGAN-CLIP code which was based on the notebooks of @RiversWithWings a

dribnet 276 Dec 12, 2022
Activity image-based video retrieval

Cross-modal-retrieval Our approach is focus on Activity Image-to-Video Retrieval (AIVR) task. The compared methods are state-of-the-art single modalit

BCMI 75 Oct 21, 2021
Pytorch Lightning Distributed Accelerators using Ray

Distributed PyTorch Lightning Training on Ray This library adds new PyTorch Lightning plugins for distributed training using the Ray distributed compu

167 Jan 02, 2023
RepMLP: Re-parameterizing Convolutions into Fully-connected Layers for Image Recognition

RepMLP: Re-parameterizing Convolutions into Fully-connected Layers for Image Recognition (PyTorch) Paper: https://arxiv.org/abs/2105.01883 Citation: @

260 Jan 03, 2023
On the model-based stochastic value gradient for continuous reinforcement learning

On the model-based stochastic value gradient for continuous reinforcement learning This repository is by Brandon Amos, Samuel Stanton, Denis Yarats, a

Facebook Research 46 Dec 15, 2022
Temporal-Relational CrossTransformers

Temporal-Relational Cross-Transformers (TRX) This repo contains code for the method introduced in the paper: Temporal-Relational CrossTransformers for

83 Dec 12, 2022
The spiritual successor to knockknock for PyTorch Lightning, get notified when your training ends

Who's there? The spiritual successor to knockknock for PyTorch Lightning, to get a notification when your training is complete or when it crashes duri

twsl 70 Oct 06, 2022
计算机视觉中用到的注意力模块和其他即插即用模块PyTorch Implementation Collection of Attention Module and Plug&Play Module

PyTorch实现多种计算机视觉中网络设计中用到的Attention机制,还收集了一些即插即用模块。由于能力有限精力有限,可能很多模块并没有包括进来,有任何的建议或者改进,可以提交issue或者进行PR。

PJDong 599 Dec 23, 2022
sssegmentation is a general framework for our research on strongly supervised semantic segmentation.

sssegmentation is a general framework for our research on strongly supervised semantic segmentation.

445 Jan 02, 2023
This is Unofficial Repo. Lips Don't Lie: A Generalisable and Robust Approach to Face Forgery Detection (CVPR 2021)

Lips Don't Lie: A Generalisable and Robust Approach to Face Forgery Detection This is a PyTorch implementation of the LipForensics paper. This is an U

Minha Kim 2 May 11, 2022
Codes and scripts for "Explainable Semantic Space by Grounding Languageto Vision with Cross-Modal Contrastive Learning"

Visually Grounded Bert Language Model This repository is the official implementation of Explainable Semantic Space by Grounding Language to Vision wit

17 Dec 17, 2022
Python project to take sound as input and output as RGB + Brightness values suitable for DMX

sound-to-light Python project to take sound as input and output as RGB + Brightness values suitable for DMX Current goals: Get one pixel working: Vary

Bobby Cox 1 Nov 17, 2021
[NeurIPS 2021] Well-tuned Simple Nets Excel on Tabular Datasets

[NeurIPS 2021] Well-tuned Simple Nets Excel on Tabular Datasets Introduction This repo contains the source code accompanying the paper: Well-tuned Sim

52 Jan 04, 2023
Information Gain Filtration (IGF) is a method for filtering domain-specific data during language model finetuning. IGF shows significant improvements over baseline fine-tuning without data filtration.

Information Gain Filtration Information Gain Filtration (IGF) is a method for filtering domain-specific data during language model finetuning. IGF sho

4 Jul 28, 2022
Calibrate your listeners! Robust communication-based training for pragmatic speakers. Findings of EMNLP 2021.

Calibrate your listeners! Robust communication-based training for pragmatic speakers Rose E. Wang, Julia White, Jesse Mu, Noah D. Goodman Findings of

Rose E. Wang 3 Apr 02, 2022
A proof of concept ai-powered Recaptcha v2 solver

Recaptcha Fullauto I've decided to open source my old Recaptcha v2 solver. My latest version will be opened sourced this summer. I am hoping this proj

Nate 60 Dec 20, 2022
Repo for "Physion: Evaluating Physical Prediction from Vision in Humans and Machines" submission to NeurIPS 2021 (Datasets & Benchmarks track)

Physion: Evaluating Physical Prediction from Vision in Humans and Machines This repo contains code and data to reproduce the results in our paper, Phy

Cognitive Tools Lab 38 Jan 06, 2023
2021搜狐校园文本匹配算法大赛 分比我们低的都是帅哥队

sohu_text_matching 2021搜狐校园文本匹配算法大赛Top2:分比我们低的都是帅哥队 本repo包含了本次大赛决赛环节提交的代码文件及答辩PPT,提交的模型文件可在百度网盘获取(链接:https://pan.baidu.com/s/1T9FtwiGFZhuC8qqwXKZSNA ,

hflserdaniel 43 Oct 01, 2022
Powerful unsupervised domain adaptation method for dense retrieval.

Powerful unsupervised domain adaptation method for dense retrieval

Ubiquitous Knowledge Processing Lab 191 Dec 28, 2022
Additional functionality for use with fastai’s medical imaging module

fmi Adding additional functionality to fastai's medical imaging module To learn more about medical imaging using Fastai you can view my blog Install g

14 Oct 31, 2022