A visualisation tool for Deep Reinforcement Learning

Related tags

Deep Learningdrlvis
Overview

DRLVIS - Visualising Deep Reinforcement Learning


Created by Marios Sirtmatsis with the support of Alex Bäuerle.

DRLVis is an application used for visualising deep reinforcement learning. The goal is to enable developers to get a further understanding of broadly used algorithms across the deep reinforcement learning landscape. Also DRLVis shall provide a tool for researchers and developers to help them understand errors in their implemented algorithms.

Installation

  1. Install the drlvis pip package by using the following command pip install -e drlvis from the directory above the drlvis directory
  2. After that simply run drlvis --logdir @PATH_TO_LOGDIR
  3. Open your browser on http://localhost:8000

Implementation

Architecture

The application is split into a backend and a fronted, where the backend does most of the data preprocessing. The frontend provides meaningful visualisations for further understanding of what the agent is doing, how rewards, weights and actions develop over time and how confident the agent is in selecting its actions.

Workflow for using DRLVis

  1. Train agent and log data
  2. Run drlvis
  3. Interpret meaningful visualisations in your browser

Logging

Logging for the use of drlvis is done by logger.py. The file contains a documentation on which values should be passed for logging. Thlogger.py contains an individual function for every loggable value/values. Some (the most important) of these functions are:


def create_logger(logdir)

The create_logger() function has to be used for initializing the logger and specifying the target destination of the logging directory. It is always important, that the logdir either does not exist yet or is an empty directory.


def log_episode_return(episode_return, episode_count)

With log_episode_return() one is able to log the accumulated reward per episode, with the step being the curresponding current episode count.


def log_action_divergence(action_probs, action_probs_old, episode_count, apply_softmax )

With log_action_divergence() one can calculate the divergence between actions in the current episode and actions in the last episode. Therefore the action_probabilities for each observation per timestep in an episode has to be collected. In the end of an episode this collection of action probabilites and the collection from the episode before can be passed to the log_action_divergence() method, which then calculates the kl divergence between action probabilities of the last episode and the current episode. Example code snippet with a model with softmax activation in the last layer:


def log_frame(frame, episode_count, step)

Using log_frame() one can log the frame which is currently being observed, or which corresponds with the current timestep. The episode count is the current episode and the step is the timestep within the episode on which the frame is being observed or corresponds with.


from drlvis import logger
import numpy as np

probs_curr = []

for episode in range(episode_range):

    for timestep in range(optional_timestep_range):
    
        if end_of_current_episode: #done in openai gym
            if episode >= 1:
                logger.log_action_divergence(probs_old, probs_curr, episode)
            probs_old = probs_curr

        probs_curr.append(model(observation[np.newaxis,:]))

def log_action_probs(predictions, episode_count, step, apply_softmax)

One can use log_action_probs() for logging the predictions of ones model for the currently observed timestep in an episode. If the model does not output probabilites, one can set apply_softmax to True for creating probabilities based on predictions.


def log_experiment_random_states(random_state_samples, predicted_dists, obs_min, obs_max, episode_num, state_meanings, apply_softmax)

The log_experiment_random_states()function takes a highdimensional array containing randomly generated states in bounds of the environments capabilities. (obs_min, obs_max) It also needs the episode in which a random states experiment shall be performed. The function then reduces the dimensions to two dimensions with UMAP for visualisation purposes. The state meanings can be passed for easier environments to reflect what the different states mean. A random state experiment itself is just a method to evaluate the agents confidence in selecting certain actions for randomly generated states. Example code snippet:

from drlvis import logger
import numpy as np

def random_states_experiment(model, episode_num):
   
    obs_space = env.observation_space
    obs_min = obs_space.low
    obs_max = obs_space.high


    num_samples = 10000 # can be an arbitrary number
    random_state_samples = np.random.uniform(
        low=obs_min, high=obs_max, size=(num_samples, len(obs_min)))

    predicted_dists = model(random_state_samples)
   
    logger.log_experiment_random_states(random_state_samples, predicted_dists, obs_min, obs_max, episode_num, [])

def log_action_distribution(actions, episode_count)

The log_action_distribution() function calculates the distribution of actions in the specified episode. Therefore one solely has to pass the actions, which where selected in the current episode episode_count


def log_weights(weight_tensor, step, episode_count)

With log_weights()one can log the weights of the last layer of ones model in a given timestep in an episode. This can be done as follows (model is keras model but not of major importance):

from drlvis import logger

weights = agent.model.weights[-2].numpy()
logger.log_weights(weight_tensor=weights, step=timestep ,episode_count=episode)

Examples

Examples on how to use the logger functions in real DRL implementations can be found in the examples folder that contains simple cartpole implementation in dqn_cartpole.ipynb and a more complex DQN implementation for playing Atari Breakout in dqn/.

Bachelor Thesis

For further information on how to use DRLVis and details about the application, I refer to my bachelor thesis located at documents/bachelor_thesis_visdrl.pdf.

License

MIT

Owner
Marios Sirtmatsis
Marios Sirtmatsis
Code for "Learning Graph Cellular Automata"

Learning Graph Cellular Automata This code implements the experiments from the NeurIPS 2021 paper: "Learning Graph Cellular Automata" Daniele Grattaro

Daniele Grattarola 37 Oct 26, 2022
Implementation for Paper "Inverting Generative Adversarial Renderer for Face Reconstruction"

StyleGAR TODO: add arxiv link Implementation of Inverting Generative Adversarial Renderer for Face Reconstruction TODO: for test Currently, some model

155 Oct 27, 2022
Compact Bidirectional Transformer for Image Captioning

Compact Bidirectional Transformer for Image Captioning Requirements Python 3.8 Pytorch 1.6 lmdb h5py tensorboardX Prepare Data Please use git clone --

YE Zhou 19 Dec 12, 2022
An end-to-end project on customer segmentation

End-to-end Customer Segmentation Project Note: This project is in progress. Tools Used in This Project Prefect: Orchestrate workflows hydra: Manage co

Ocelot Consulting 8 Oct 06, 2022
[SIGIR22] Official PyTorch implementation for "CORE: Simple and Effective Session-based Recommendation within Consistent Representation Space".

CORE This is the official PyTorch implementation for the paper: Yupeng Hou, Binbin Hu, Zhiqiang Zhang, Wayne Xin Zhao. CORE: Simple and Effective Sess

RUCAIBox 26 Dec 19, 2022
[ECCVW2020] Robust Long-Term Object Tracking via Improved Discriminative Model Prediction (RLT-DiMP)

Feel free to visit my homepage Robust Long-Term Object Tracking via Improved Discriminative Model Prediction (RLT-DIMP) [ECCVW2020 paper] Presentation

Seokeon Choi 35 Oct 26, 2022
The official implementation of the CVPR2021 paper: Decoupled Dynamic Filter Networks

Decoupled Dynamic Filter Networks This repo is the official implementation of CVPR2021 paper: "Decoupled Dynamic Filter Networks". Introduction DDF is

F.S.Fire 180 Dec 30, 2022
Code for CPM-2 Pre-Train

CPM-2 Pre-Train Pre-train CPM-2 此分支为110亿非 MoE 模型的预训练代码,MoE 模型的预训练代码请切换到 moe 分支 CPM-2技术报告请参考link。 0 模型下载 请在智源资源下载页面进行申请,文件介绍如下: 文件名 描述 参数大小 100000.tar

Tsinghua AI 136 Dec 28, 2022
Implementation of Shape Generation and Completion Through Point-Voxel Diffusion

Shape Generation and Completion Through Point-Voxel Diffusion Project | Paper Implementation of Shape Generation and Completion Through Point-Voxel Di

Linqi Zhou 103 Dec 29, 2022
[SDM 2022] Towards Similarity-Aware Time-Series Classification

SimTSC This is the PyTorch implementation of SDM2022 paper Towards Similarity-Aware Time-Series Classification. We propose Similarity-Aware Time-Serie

Daochen Zha 49 Dec 27, 2022
Reproducible research and reusable acyclic workflows in Python. Execute code on HPC systems as if you executed them on your personal computer!

Reproducible research and reusable acyclic workflows in Python. Execute code on HPC systems as if you executed them on your machine! Motivation Would

Joeri Hermans 15 Sep 11, 2022
Exploring Simple 3D Multi-Object Tracking for Autonomous Driving (ICCV 2021)

Exploring Simple 3D Multi-Object Tracking for Autonomous Driving Chenxu Luo, Xiaodong Yang, Alan Yuille Exploring Simple 3D Multi-Object Tracking for

QCraft 141 Nov 21, 2022
Real-Time High-Resolution Background Matting

Real-Time High-Resolution Background Matting Official repository for the paper Real-Time High-Resolution Background Matting. Our model requires captur

Peter Lin 6.1k Jan 03, 2023
v objective diffusion inference code for PyTorch.

v-diffusion-pytorch v objective diffusion inference code for PyTorch, by Katherine Crowson (@RiversHaveWings) and Chainbreakers AI (@jd_pressman). The

Katherine Crowson 635 Dec 30, 2022
A series of convenience functions to make basic image processing operations such as translation, rotation, resizing, skeletonization, and displaying Matplotlib images easier with OpenCV and Python.

imutils A series of convenience functions to make basic image processing functions such as translation, rotation, resizing, skeletonization, and displ

Adrian Rosebrock 4.3k Jan 08, 2023
PyTorch Implementation for Fracture Detection in Wrist Bone X-ray Images

wrist-d PyTorch Implementation for Fracture Detection in Wrist Bone X-ray Images note: Paper: Under Review at MPDI Diagnostics Submission Date: Novemb

Fatih UYSAL 5 Oct 12, 2022
Background-Click Supervision for Temporal Action Localization

Background-Click Supervision for Temporal Action Localization This repository is the official implementation of BackTAL. In this work, we study the te

LeYang 221 Oct 09, 2022
Source Code for DialogBERT: Discourse-Aware Response Generation via Learning to Recover and Rank Utterances (https://arxiv.org/pdf/2012.01775.pdf)

DialogBERT This is a PyTorch implementation of the DialogBERT model described in DialogBERT: Neural Response Generation via Hierarchical BERT with Dis

Xiaodong Gu 67 Jan 06, 2023
Learning Representational Invariances for Data-Efficient Action Recognition

Learning Representational Invariances for Data-Efficient Action Recognition Official PyTorch implementation for Learning Representational Invariances

Virginia Tech Vision and Learning Lab 27 Nov 22, 2022
The official implementation of paper Siamese Transformer Pyramid Networks for Real-Time UAV Tracking, accepted by WACV22

SiamTPN Introduction This is the official implementation of the SiamTPN (WACV2022). The tracker intergrates pyramid feature network and transformer in

Robotics and Intelligent Systems Control @ NYUAD 29 Jan 08, 2023