This repository is the code of the paper Accelerating Deep Reinforcement Learning for Digital Twin Network Optimization with Evolutionary Strategies

Overview

ES_OTN_Public

Carlos Güemes Palau, Paul Almasan, Pere Barlet Ros, Albert Cabellos Aparicio

Contact us: [email protected], [email protected]

Abstract

This repository is the code of the paper Accelerating Deep Reinforcement Learning for Digital Twin Network Optimization with Evolutionary Strategies

The recent growth of emergent network applications (e.g., satellite networks, vehicular networks) is increasing the complexity of managing modern communication networks. As a result, the community proposed the Digital Twin Networks (DTN) as a key enabler of efficient network management. Network operators can leverage the DTN to perform different optimization tasks (e.g., Traffic Engineering, Network Planning). Deep Reinforcement Learning (DRL) showed a high performance when applied to solve network optimization problems. In the context of DTN, DRL can be leveraged to solve optimization problems without directly impacting the real-world network behavior. However, DRL scales poorly with the problem size and complexity. In this paper, we explore the use of Evolutionary Strategies (ES) to train DRL agents for solving a routing optimization problem. The experimental results show that ES achieved a training time speed-up of 128 and 6 for the NSFNET and GEANT2 topologies respectively.

Instructions to execute

Setting up the enviroment

  1. First, make sure your OS has a functioning implementation of MPI. We recommend using OpenMPI.
  2. Create the virtual environment and activate the environment.
virtualenv -p python3 myenv
source myenv/bin/activate
  1. Then we install the required packages
pip install -r Prerequisites/requirements.txt

or

pip install absl-py==0.13.0 astunparse==1.6.3 cachetools==4.2.2 certifi==2021.5.30 charset-normalizer==2.0.2 cloudpickle==1.6.0 cycler==0.10.0 dataclasses==0.8 decorator==4.4.2 flatbuffers==1.12 gast==0.3.3 google-auth==1.33.0 google-auth-oauthlib==0.4.4 google-pasta==0.2.0 grpcio==1.32.0 gym==0.18.3 h5py==2.10.0 idna==3.2 importlib-metadata==4.6.1 Keras==2.4.3 Keras-Preprocessing==1.1.2 kiwisolver==1.3.1 Markdown==3.3.4 matplotlib==3.3.4 mpi4py==3.0.3 networkx==2.5.1 numpy==1.19.5 oauthlib==3.1.1 opt-einsum==3.3.0 pandas==1.1.5 Pillow==8.2.0 pkg_resources==0.0.0 protobuf==3.17.3 pyasn1==0.4.8 pyasn1-modules==0.2.8 pyglet==1.5.15 pyparsing==2.4.7 python-dateutil==2.8.2 pytz==2021.1 PyYAML==5.4.1 requests==2.26.0 requests-oauthlib==1.3.0 rsa==4.7.2 scipy==1.5.4 six==1.15.0 tensorboard==2.5.0 tensorboard-data-server==0.6.1 tensorboard-plugin-wit==1.8.0 tensorflow==2.4.0 tensorflow-estimator==2.4.0 termcolor==1.1.0 typing-extensions==3.7.4.3 urllib3==1.26.6 Werkzeug==2.0.1 wrapt==1.12.1 zipp==3.5.0 kspath

NOTE: as an alternative to steps 1-3 you can try to set up a docker image to install both MPI and python. We offer an incomplete dockerfile with the steps needed to cover all the code dependencies at "Prerequisites/sample_dockerfile.dockerfile". The file must be completed so the image also clones the repository and runs the code.

  1. Register custom gym environment
pip install -e gym-environments/

Running ES

  1. Now we can train an ES agent. To do so we execute the following command, choosing an adequate configuration file (*.config).
python train_ES_agent_multipleEnvs.py -c path/to/configuration/file.config
  1. While training occurs the resulting file will be generated in Logs. to visualize the results, we can then plot the results using the following command:
python parse_logs.py -d Logs/log1.txt Logs/log2.txt

We can add one more log files for the "-d" option. We can also add the "-s" option to store the generated graph in a file:

python parse_logs.py -d Logs/log1.txt Logs/log2.txt -s graph_file.png

Running PPO

We also added the code necessary to run the solution using PPO, as to compare its result to ES

  1. To train the PPO agent we must execute the following command.
    • The "-e" option controls the number of iterations in the algorithm
    • The "-f" option is used to indicate the folder in which the topologies are stored ("*.graph") files
    • The "-g" option is used to indicate the name of the topology
    • Notice that inside train_PPO_agent.py there are different hyperparameters that you can configure to set the training for different topologies, to define the size of the GNN model, etc.
python train_PPO_agent.py -e 1500 -f dataset_Topologies -g nsfnet
  1. Now that the training process is executing, we can see the PPO agent performance evolution by parsing the log files.
    • The "-f" and "-g" options are the same as before
    • The "-d" option is used to indicate the path to the log file
python parse_PPO.py -d ./Logs/expsample_PPO_agentLogs.txt -f dataset_Topologies -g nsfnet

Repository contents

  • configs: folder containing the configuration files for the code.

    • As it is right now, the different configuration files should be grouped in subfolders (e.g., BatchFinal) as for the correct generation of the log files.
  • dataset_Topologies: contains the graph and paths files. The graphs must be represented as ".graph" files

  • gym_environments: pip package to be installed, which includes the gym environment to be used to train model

  • Logs: contains the logs generated by training of the models

  • models: contains the parameters of the network at the different stages of its training. The parameters are stored every time the network is updated. The different models will be divided in subfolders.

  • Prerequisites: a folder containing some files that may prove useful to set up the python environment

    • packages.txt: pip freeze of all the python packages needed to run the enviroment.
    • sample_dockerfile.dockerfile: (incomplete) dockerfile to launch an image with all the code requirements fulfilled in order to launch the code.
  • saved_params: folder containing the files containing the initial parameters of the network. These can be used to ensure that different executions start from the same initial set of weights.

  • tmpPPO: folder needed to store temporal files created by the PPO algorithm

  • actorPPO: python file that contains the definition of the actor neural network for PPO.

  • criticPPO: python file that contains the definition of the critic neural network for PPO

  • parsePPO: python file used to parse PPO's logs

  • train_PPO_agent.py: python file that contains the implementation of the PPO algorithm.

  • actorES32.py: python file that contains the definition of the neural network for ES

  • optimizers.py: python file that contains the implementation of the gradient descent algorithm

  • parse_logs.py: python file used to parse ES's logs

  • train_ES_agent_multipleEnvs.py: python file that contains the implementation of the ES algorithm.

Configuration file options

The configuration file is a JSON file that contains the hyperparameters and other variable fields of the algorithm. These fields are as follows:

  • gnn-params: dict containing the hyperparameters of the GNN. These are:
    • link_state_dim: dimension of the hidden layer of the message and update functions
    • readout_units: dimension of the hidden layers of the readout function
    • T: number of iterations done for the message passing phase
    • num:demands: number of the number of possible demands sizes done by the environment
  • list_of_demands: list containing the possible demand sizes done by the environment
  • params_file: (Optional) name of the file that contains the initial weights of the network. If it doesn't exist, it will create one.
  • tr_graph_topologies: list of names of the topologies to be used for training the network
  • tr_dataset_folder_name: list of paths where the topologies specified in "tr_graph_topologies" can be found
  • eval_graph_topologies: list of names of the topologies to be used for evaluating the network. A log file will be generated for every topology listed here, as well as a log file that contains the average result across all the specified topologies.
  • eval_dataset_folder_name: list of paths where the topologies specified in "eval_graph_topologies" can be found
  • evaluation_episodes: hoy many episodes must be run to evaluate each topology in "eval_graph_topologies".
  • evaluation_period: indicates how often the current model has to be evaluated
  • number_mutations: Number of perturbations generated (this does NOT include those generated by mirrored sampling, true number will be double)
  • l2_coeff: Coefficient to be used for L2 regularization.
  • param_noise_std: Standard deviation used to generate the mutations
  • action_noise_std: Standard deviation of noise to be added to the action probabilities distributions (0 means no noise is added)
  • episode_iterations: number of iterations to run
  • optimizer: Type of optimizer to run. Name must match one of the optimizers in "optimizers.py"
  • lr: Initial rate of the optimizer

License

See LICENSE for full of the license text.

Copyright Copyright 2022 Universitat Politècnica de Catalunya

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

  http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Owner
Barcelona Neural Networking Center
BNN has been created with the main goals of carrying fundamental research in the field of Graph Neural Network applied to Computer Networks
Barcelona Neural Networking Center
This repository for project that can Automate Number Plate Recognition (ANPR) in Morocco Licensed Vehicles. 💻 + 🚙 + 🇲🇦 = 🤖 🕵🏻‍♂️

MoroccoAI Data Challenge (Edition #001) This Reposotory is result of our work in the comepetiton organized by MoroccoAI in the context of the first Mo

SAFOINE EL KHABICH 14 Oct 31, 2022
Iowa Project - My second project done at General Assembly, focused on feature engineering and understanding Linear Regression as a concept

Project 2 - Ames Housing Data and Kaggle Challenge PROBLEM STATEMENT Inferring or Predicting? What's more valuable for a housing model? When creating

Adam Muhammad Klesc 1 Jan 03, 2022
CVPR 2021: "The Spatially-Correlative Loss for Various Image Translation Tasks"

Spatially-Correlative Loss arXiv | website We provide the Pytorch implementation of "The Spatially-Correlative Loss for Various Image Translation Task

Chuanxia Zheng 89 Jan 04, 2023
The implementation of our CIKM 2021 paper titled as: "Cross-Market Product Recommendation"

FOREC: A Cross-Market Recommendation System This repository provides the implementation of our CIKM 2021 paper titled as "Cross-Market Product Recomme

Hamed Bonab 16 Sep 12, 2022
Official PyTorch implementation of Retrieve in Style: Unsupervised Facial Feature Transfer and Retrieval.

Retrieve in Style: Unsupervised Facial Feature Transfer and Retrieval PyTorch This is the PyTorch implementation of Retrieve in Style: Unsupervised Fa

60 Oct 12, 2022
PyContinual (An Easy and Extendible Framework for Continual Learning)

PyContinual (An Easy and Extendible Framework for Continual Learning) Easy to Use You can sumply change the baseline, backbone and task, and then read

Zixuan Ke 176 Jan 05, 2023
A2LP for short, ECCV2020 spotlight, Investigating SSL principles for UDA problems

Label-Propagation-with-Augmented-Anchors (A2LP) Official codes of the ECCV2020 spotlight (label propagation with augmented anchors: a simple semi-supe

20 Oct 27, 2022
Official Pytorch Code for the paper TransWeather

TransWeather Official Code for the paper TransWeather, Arxiv Tech Report 2021 Paper | Website About this repo: This repo hosts the implentation code,

Jeya Maria Jose 81 Dec 30, 2022
A PyTorch Implementation of "Watch Your Step: Learning Node Embeddings via Graph Attention" (NeurIPS 2018).

Attention Walk ⠀⠀ A PyTorch Implementation of Watch Your Step: Learning Node Embeddings via Graph Attention (NIPS 2018). Abstract Graph embedding meth

Benedek Rozemberczki 303 Dec 09, 2022
A GUI to automatically create a TOPAS-readable MLC simulation file

Python script to create a TOPAS-readable simulation file descriring a Multi-Leaf-Collimator. Builds the MLC using the data from a 3D .stl file.

Sebastian Schäfer 0 Jun 19, 2022
This repository is a series of notebooks that show solutions for the projects at Dataquest.io.

Dataquest Project Solutions This repository is a series of notebooks that show solutions for the projects at Dataquest.io. Of course, there are always

Dataquest 1.1k Dec 30, 2022
Real-time face detection and emotion/gender classification using fer2013/imdb datasets with a keras CNN model and openCV.

Real-time face detection and emotion/gender classification using fer2013/imdb datasets with a keras CNN model and openCV.

Octavio Arriaga 5.3k Dec 30, 2022
Multi-view 3D reconstruction using neural rendering. Unofficial implementation of UNISURF, VolSDF, NeuS and more.

Volume rendering + 3D implicit surface Showcase What? previous: surface rendering; now: volume rendering previous: NeRF's volume density; now: implici

Jianfei Guo 682 Jan 04, 2023
A small library for creating and manipulating custom JAX Pytree classes

Treeo A small library for creating and manipulating custom JAX Pytree classes Light-weight: has no dependencies other than jax. Compatible: Treeo Tree

Cristian Garcia 58 Nov 23, 2022
[ICML 2020] DrRepair: Learning to Repair Programs from Error Messages

DrRepair: Learning to Repair Programs from Error Messages This repo provides the source code & data of our paper: Graph-based, Self-Supervised Program

Michihiro Yasunaga 155 Jan 08, 2023
Julia package for contraction of tensor networks, based on the sweep line algorithm outlined in the paper General tensor network decoding of 2D Pauli codes

Julia package for contraction of tensor networks, based on the sweep line algorithm outlined in the paper General tensor network decoding of 2D Pauli codes

Christopher T. Chubb 35 Dec 21, 2022
HW3 ― GAN, ACGAN and UDA

HW3 ― GAN, ACGAN and UDA In this assignment, you are given datasets of human face and digit images. You will need to implement the models of both GAN

grassking100 1 Dec 13, 2021
Paper: De-rendering Stylized Texts

Paper: De-rendering Stylized Texts Wataru Shimoda1, Daichi Haraguchi2, Seiichi Uchida2, Kota Yamaguchi1 1CyberAgent.Inc, 2 Kyushu University Accepted

CyberAgent AI Lab 55 Dec 18, 2022
It's a implement of this paper:Relation extraction via Multi-Level attention CNNs

Relation Classification via Multi-Level Attention CNNs It's a implement of this paper:Relation Classification via Multi-Level Attention CNNs. Training

Aybss 2 Nov 04, 2022
Generate Cartoon Images using Generative Adversarial Network

AvatarGAN ✨ Generate Cartoon Images using DC-GAN Deep Convolutional GAN is a generative adversarial network architecture. It uses a couple of guidelin

Aakash Jhawar 50 Dec 29, 2022