Spearmint Bayesian optimization codebase

Overview

Spearmint

Spearmint is a software package to perform Bayesian optimization. The Software is designed to automatically run experiments (thus the code name spearmint) in a manner that iteratively adjusts a number of parameters so as to minimize some objective in as few runs as possible.

IMPORTANT: Spearmint is under an Academic and Non-Commercial Research Use License. Before using spearmint please be aware of the license. If you do not qualify to use spearmint you can ask to obtain a license as detailed in the license or you can use the older open source code version (which is somewhat outdated) at https://github.com/JasperSnoek/spearmint.

Relevant Publications

Spearmint implements a combination of the algorithms detailed in the following publications:

Practical Bayesian Optimization of Machine Learning Algorithms  
Jasper Snoek, Hugo Larochelle and Ryan Prescott Adams  
Advances in Neural Information Processing Systems, 2012  

Multi-Task Bayesian Optimization  
Kevin Swersky, Jasper Snoek and Ryan Prescott Adams  
Advances in Neural Information Processing Systems, 2013  

Input Warping for Bayesian Optimization of Non-stationary Functions  
Jasper Snoek, Kevin Swersky, Richard Zemel and Ryan Prescott Adams  
International Conference on Machine Learning, 2014  

Bayesian Optimization and Semiparametric Models with Applications to Assistive Technology  
Jasper Snoek, PhD Thesis, University of Toronto, 2013  

Bayesian Optimization with Unknown Constraints
Michael Gelbart, Jasper Snoek and Ryan Prescott Adams
Uncertainty in Artificial Intelligence, 2014

Setting up Spearmint

STEP 1: Installation

  1. Install python, numpy, scipy, pymongo. For academic users, the anaconda distribution is great. Use numpy 1.8 or higher. We use python 2.7.
  2. Download/clone the spearmint code
  3. Install the spearmint package using pip: pip install -e \</path/to/spearmint/root\> (the -e means changes will be reflected automatically)
  4. Download and install MongoDB: https://www.mongodb.org/
  5. Install the pymongo package using e.g., pip pip install pymongo or anaconda conda install pymongo

STEP 2: Setting up your experiment

  1. Create a callable objective function. See ./examples/simple/branin.py as an example
  2. Create a config file. There are 3 example config files in the ../examples directory. Note 1: There are more parameters that can be set in the config files than what is shown in the examples, but these parameters all have default values. Note 2: By default Spearmint assumes your function is noisy (non-deterministic). If it is noise-free, you should set this explicitly as in the ../examples/simple/config.json file.

STEP 3: Running spearmint

  1. Start up a MongoDB daemon instance:
    mongod --fork --logpath <path/to/logfile\> --dbpath <path/to/dbfolder\>
  2. Run spearmint: python main.py \</path/to/experiment/directory\>

STEP 4: Looking at your results
Spearmint will output results to standard out / standard err. You can also load the results from the database and manipulate them directly.

Owner
Formerly: Harvard Intelligent Probabilistic Systems Group -- Now at Princeton
Ryan Adams' research group. Formerly at Harvard, now at Princeton. New Github repositories here: https://github.com/PrincetonLIPS
Formerly: Harvard Intelligent Probabilistic Systems Group -- Now at Princeton
Experiments on continual learning from a stream of pretrained models.

Ex-model CL Ex-model continual learning is a setting where a stream of experts (i.e. model's parameters) is available and a CL model learns from them

Antonio Carta 6 Dec 04, 2022
Semantic Segmentation with SegFormer on Drone Dataset.

SegFormer_Segmentation Semantic Segmentation with SegFormer on Drone Dataset. You can check out the blog on Medium You can also try out the model with

Praneet 8 Oct 20, 2022
PyStan, a Python interface to Stan, a platform for statistical modeling. Documentation: https://pystan.readthedocs.io

PyStan NOTE: This documentation describes a BETA release of PyStan 3. PyStan is a Python interface to Stan, a package for Bayesian inference. Stan® is

Stan 229 Dec 29, 2022
Learning from Synthetic Shadows for Shadow Detection and Removal [Inoue+, IEEE TCSVT 2020].

Learning from Synthetic Shadows for Shadow Detection and Removal (IEEE TCSVT 2020) Overview This repo is for the paper "Learning from Synthetic Shadow

Naoto Inoue 67 Dec 28, 2022
The self-supervised goal reaching benchmark introduced in Discovering and Achieving Goals via World Models

Lexa-Benchmark Codebase for the self-supervised goal reaching benchmark introduced in 'Discovering and Achieving Goals via World Models'. Setup Create

1 Oct 14, 2021
Official repository for the NeurIPS 2021 paper Get Fooled for the Right Reason: Improving Adversarial Robustness through a Teacher-guided curriculum Learning Approach

Get Fooled for the Right Reason Official repository for the NeurIPS 2021 paper Get Fooled for the Right Reason: Improving Adversarial Robustness throu

Sowrya Gali 1 Apr 25, 2022
IAUnet: Global Context-Aware Feature Learning for Person Re-Identification

IAUnet This repository contains the code for the paper: IAUnet: Global Context-Aware Feature Learning for Person Re-Identification Ruibing Hou, Bingpe

30 Jul 14, 2022
StyleGAN-NADA: CLIP-Guided Domain Adaptation of Image Generators

StyleGAN-NADA: CLIP-Guided Domain Adaptation of Image Generators [Project Website] [Replicate.ai Project] StyleGAN-NADA: CLIP-Guided Domain Adaptation

992 Dec 30, 2022
Keeping it safe - AI Based COVID-19 Tracker using Deep Learning and facial recognition

Keeping it safe - AI Based COVID-19 Tracker using Deep Learning and facial recognition

Vansh Wassan 15 Jun 17, 2021
Code for "Solving Graph-based Public Good Games with Tree Search and Imitation Learning"

Code for "Solving Graph-based Public Good Games with Tree Search and Imitation Learning" This is the code for the paper Solving Graph-based Public Goo

Victor-Alexandru Darvariu 3 Dec 05, 2022
Using some basic methods to show linkages and transformations of robotic arms

roboticArmVisualizer Python GUI application to create custom linkages and adjust joint angles. In the future, I plan to add 2d inverse kinematics solv

Sandesh Banskota 1 Nov 19, 2021
Universal Adversarial Triggers for Attacking and Analyzing NLP (EMNLP 2019)

Universal Adversarial Triggers for Attacking and Analyzing NLP This is the official code for the EMNLP 2019 paper, Universal Adversarial Triggers for

Eric Wallace 248 Dec 17, 2022
Graph Posterior Network: Bayesian Predictive Uncertainty for Node Classification (NeurIPS 2021)

Graph Posterior Network This is the official code repository to the paper Graph Posterior Network: Bayesian Predictive Uncertainty for Node Classifica

Maximilian Stadler 30 Dec 05, 2022
ruptures: change point detection in Python

Welcome to ruptures ruptures is a Python library for off-line change point detection. This package provides methods for the analysis and segmentation

Charles T. 1.1k Jan 03, 2023
Baseline of DCASE 2020 task 4

Couple Learning for SED This repository provides the data and source code for sound event detection (SED) task. The improvement of the Couple Learning

21 Oct 18, 2022
Deep Learning & 3D Convolutional Neural Networks for Speaker Verification

TensorFlow implementation of 3D Convolutional Neural Networks for Speaker Verification - Official Project Page - Pytorch Implementation This repositor

Amirsina Torfi 753 Dec 17, 2022
StudioGAN is a Pytorch library providing implementations of representative Generative Adversarial Networks (GANs) for conditional/unconditional image generation.

StudioGAN is a Pytorch library providing implementations of representative Generative Adversarial Networks (GANs) for conditional/unconditional image generation.

3k Jan 08, 2023
Code for ACL'2021 paper WARP 🌀 Word-level Adversarial ReProgramming

Code for ACL'2021 paper WARP 🌀 Word-level Adversarial ReProgramming. Outperforming `GPT-3` on SuperGLUE Few-Shot text classification.

YerevaNN 75 Nov 06, 2022
Pytorch library for seismic data augmentation

Pytorch library for seismic data augmentation

Artemii Novoselov 27 Nov 22, 2022
Numerai tournament example scripts using NN and optuna

numerai_NN_example Numerai tournament example scripts using pytorch NN, lightGBM and optuna https://numer.ai/tournament Performance of my model based

Takahiro Maeda 12 Oct 10, 2022