SOLO and SOLOv2 for instance segmentation, ECCV 2020 & NeurIPS 2020.

Overview

SOLO: Segmenting Objects by Locations

This project hosts the code for implementing the SOLO algorithms for instance segmentation.

SOLO: Segmenting Objects by Locations,
Xinlong Wang, Tao Kong, Chunhua Shen, Yuning Jiang, Lei Li
In: Proc. European Conference on Computer Vision (ECCV), 2020
arXiv preprint (arXiv 1912.04488)

SOLOv2: Dynamic and Fast Instance Segmentation,
Xinlong Wang, Rufeng Zhang, Tao Kong, Lei Li, Chunhua Shen
In: Proc. Advances in Neural Information Processing Systems (NeurIPS), 2020
arXiv preprint (arXiv 2003.10152)

highlights

Highlights

  • Totally box-free: SOLO is totally box-free thus not being restricted by (anchor) box locations and scales, and naturally benefits from the inherent advantages of FCNs.
  • Direct instance segmentation: Our method takes an image as input, directly outputs instance masks and corresponding class probabilities, in a fully convolutional, box-free and grouping-free paradigm.
  • High-quality mask prediction: SOLOv2 is able to predict fine and detailed masks, especially at object boundaries.
  • State-of-the-art performance: Our best single model based on ResNet-101 and deformable convolutions achieves 41.7% in AP on COCO test-dev (without multi-scale testing). A light-weight version of SOLOv2 executes at 31.3 FPS on a single V100 GPU and yields 37.1% AP.

Updates

  • SOLOv2 implemented on detectron2 is released at adet. (07/12/20)
  • Training speeds up (~1.7x faster) for all models. (03/12/20)
  • SOLOv2 is available. Code and trained models of SOLOv2 are released. (08/07/2020)
  • Light-weight models and R101-based models are available. (31/03/2020)
  • SOLOv1 is available. Code and trained models of SOLO and Decoupled SOLO are released. (28/03/2020)

Installation

This implementation is based on mmdetection(v1.0.0). Please refer to INSTALL.md for installation and dataset preparation.

Models

For your convenience, we provide the following trained models on COCO (more models are coming soon). If you need the models in PaddlePaddle framework, please refer to paddlepaddle/README.md.

Model Multi-scale training Testing time / im AP (minival) Link
SOLO_R50_1x No 77ms 32.9 download
SOLO_R50_3x Yes 77ms 35.8 download
SOLO_R101_3x Yes 86ms 37.1 download
Decoupled_SOLO_R50_1x No 85ms 33.9 download
Decoupled_SOLO_R50_3x Yes 85ms 36.4 download
Decoupled_SOLO_R101_3x Yes 92ms 37.9 download
SOLOv2_R50_1x No 54ms 34.8 download
SOLOv2_R50_3x Yes 54ms 37.5 download
SOLOv2_R101_3x Yes 66ms 39.1 download
SOLOv2_R101_DCN_3x Yes 97ms 41.4 download
SOLOv2_X101_DCN_3x Yes 169ms 42.4 download

Light-weight models:

Model Multi-scale training Testing time / im AP (minival) Link
Decoupled_SOLO_Light_R50_3x Yes 29ms 33.0 download
Decoupled_SOLO_Light_DCN_R50_3x Yes 36ms 35.0 download
SOLOv2_Light_448_R18_3x Yes 19ms 29.6 download
SOLOv2_Light_448_R34_3x Yes 20ms 32.0 download
SOLOv2_Light_448_R50_3x Yes 24ms 33.7 download
SOLOv2_Light_512_DCN_R50_3x Yes 34ms 36.4 download

Disclaimer:

  • Light-weight means light-weight backbone, head and smaller input size. Please refer to the corresponding config files for details.
  • This is a reimplementation and the numbers are slightly different from our original paper (within 0.3% in mask AP).

Usage

A quick demo

Once the installation is done, you can download the provided models and use inference_demo.py to run a quick demo.

Train with multiple GPUs

./tools/dist_train.sh ${CONFIG_FILE} ${GPU_NUM}

Example: 
./tools/dist_train.sh configs/solo/solo_r50_fpn_8gpu_1x.py  8

Train with single GPU

python tools/train.py ${CONFIG_FILE}

Example:
python tools/train.py configs/solo/solo_r50_fpn_8gpu_1x.py

Testing

# multi-gpu testing
./tools/dist_test.sh ${CONFIG_FILE} ${CHECKPOINT_FILE} ${GPU_NUM}  --show --out  ${OUTPUT_FILE} --eval segm

Example: 
./tools/dist_test.sh configs/solo/solo_r50_fpn_8gpu_1x.py SOLO_R50_1x.pth  8  --show --out results_solo.pkl --eval segm

# single-gpu testing
python tools/test_ins.py ${CONFIG_FILE} ${CHECKPOINT_FILE} --show --out  ${OUTPUT_FILE} --eval segm

Example: 
python tools/test_ins.py configs/solo/solo_r50_fpn_8gpu_1x.py  SOLO_R50_1x.pth --show --out  results_solo.pkl --eval segm

Visualization

python tools/test_ins_vis.py ${CONFIG_FILE} ${CHECKPOINT_FILE} --show --save_dir  ${SAVE_DIR}

Example: 
python tools/test_ins_vis.py configs/solo/solo_r50_fpn_8gpu_1x.py  SOLO_R50_1x.pth --show --save_dir  work_dirs/vis_solo

Contributing to the project

Any pull requests or issues are welcome.

Citations

Please consider citing our papers in your publications if the project helps your research. BibTeX reference is as follows.

@inproceedings{wang2020solo,
  title     =  {{SOLO}: Segmenting Objects by Locations},
  author    =  {Wang, Xinlong and Kong, Tao and Shen, Chunhua and Jiang, Yuning and Li, Lei},
  booktitle =  {Proc. Eur. Conf. Computer Vision (ECCV)},
  year      =  {2020}
}

@article{wang2020solov2,
  title={SOLOv2: Dynamic and Fast Instance Segmentation},
  author={Wang, Xinlong and Zhang, Rufeng and  Kong, Tao and Li, Lei and Shen, Chunhua},
  journal={Proc. Advances in Neural Information Processing Systems (NeurIPS)},
  year={2020}
}

License

For academic use, this project is licensed under the 2-clause BSD License - see the LICENSE file for details. For commercial use, please contact Xinlong Wang and Chunhua Shen.

Owner
Xinlong Wang
Xinlong Wang
2021 Artificial Intelligence Diabetes Datathon

A.I.D.D. 2021 2021 Artificial Intelligence Diabetes Datathon A.I.D.D. 2021은 ‘2021 인공지능 학습용 데이터 구축사업’을 통해 만들어진 학습용 데이터를 활용하여 당뇨병을 효과적으로 예측할 수 있는가에 대한 A

2 Dec 27, 2021
Official Implementation of HRDA: Context-Aware High-Resolution Domain-Adaptive Semantic Segmentation

HRDA: Context-Aware High-Resolution Domain-Adaptive Semantic Segmentation by Lukas Hoyer, Dengxin Dai, and Luc Van Gool [Arxiv] [Paper] Overview Unsup

Lukas Hoyer 149 Dec 28, 2022
A naive ROS interface for visualDet3D.

YOLO3D ROS Node This repo contains a Monocular 3D detection Ros node. Base on https://github.com/Owen-Liuyuxuan/visualDet3D All parameters are exposed

Yuxuan Liu 19 Oct 08, 2022
Monocular Depth Estimation Using Laplacian Pyramid-Based Depth Residuals

LapDepth-release This repository is a Pytorch implementation of the paper "Monocular Depth Estimation Using Laplacian Pyramid-Based Depth Residuals" M

Minsoo Song 205 Dec 30, 2022
Implementation of the famous Image Manipulation\Forgery Detector "ManTraNet" in Pytorch

Who has never met a forged picture on the web ? No one ! Everyday we are constantly facing fake pictures touched up in Photoshop but it is not always

Rony Abecidan 77 Dec 16, 2022
A small demonstration of using WebDataset with ImageNet and PyTorch Lightning

A small demonstration of using WebDataset with ImageNet and PyTorch Lightning This is a small repo illustrating how to use WebDataset on ImageNet. usi

50 Dec 16, 2022
An unofficial implementation of "Unpaired Image Super-Resolution using Pseudo-Supervision." CVPR2020

UnpairedSR An unofficial implementation of "Unpaired Image Super-Resolution using Pseudo-Supervision." CVPR2020 turn RCAN(modified) -- xmodel(xilinx

JiaKui Hu 10 Oct 28, 2022
ICCV2021 - A New Journey from SDRTV to HDRTV.

ICCV2021 - A New Journey from SDRTV to HDRTV.

XyChen 82 Dec 27, 2022
The code for the NeurIPS 2021 paper "A Unified View of cGANs with and without Classifiers".

Energy-based Conditional Generative Adversarial Network (ECGAN) This is the code for the NeurIPS 2021 paper "A Unified View of cGANs with and without

sianchen 22 May 28, 2022
NeuTex: Neural Texture Mapping for Volumetric Neural Rendering

NeuTex: Neural Texture Mapping for Volumetric Neural Rendering Paper: https://arxiv.org/abs/2103.00762 Running Run on the provided DTU scene cd run ba

Fanbo Xiang 67 Dec 28, 2022
Towards End-to-end Video-based Eye Tracking

Towards End-to-end Video-based Eye Tracking The code accompanying our ECCV 2020 publication and dataset, EVE. Authors: Seonwook Park, Emre Aksan, Xuco

Seonwook Park 76 Dec 12, 2022
A general framework for deep learning experiments under PyTorch based on pytorch-lightning

torchx Torchx is a general framework for deep learning experiments under PyTorch based on pytorch-lightning. TODO list gan-like training wrapper text

Yingtian Liu 6 Mar 17, 2022
Implementation of H-Transformer-1D, Hierarchical Attention for Sequence Learning using 🤗 transformers

hierarchical-transformer-1d Implementation of H-Transformer-1D, Hierarchical Attention for Sequence Learning using 🤗 transformers In Progress!! 2021.

MyungHoon Jin 7 Nov 06, 2022
Offical implementation for "Trash or Treasure? An Interactive Dual-Stream Strategy for Single Image Reflection Separation".

Trash or Treasure? An Interactive Dual-Stream Strategy for Single Image Reflection Separation (NeurIPS 2021) by Qiming Hu, Xiaojie Guo. Dependencies P

Qiming Hu 31 Dec 20, 2022
Code for "Reconstructing 3D Human Pose by Watching Humans in the Mirror", CVPR 2021 oral

Reconstructing 3D Human Pose by Watching Humans in the Mirror Qi Fang*, Qing Shuai*, Junting Dong, Hujun Bao, Xiaowei Zhou CVPR 2021 Oral The videos a

ZJU3DV 178 Dec 13, 2022
OHLC Average Prediction of Apple Inc. Using LSTM Recurrent Neural Network

Stock Price Prediction of Apple Inc. Using Recurrent Neural Network OHLC Average Prediction of Apple Inc. Using LSTM Recurrent Neural Network Dataset:

Nouroz Rahman 410 Jan 05, 2023
CodeContests is a competitive programming dataset for machine-learning

CodeContests CodeContests is a competitive programming dataset for machine-learning. This dataset was used when training AlphaCode. It consists of pro

DeepMind 1.6k Jan 08, 2023
Scalable implementation of Lee / Mykland (2012) and Ait-Sahalia / Jacod (2012) Jump tests for noisy high frequency data

JumpDetectR Name of QuantLet : JumpDetectR Published in : 'To be published as "Jump dynamics in high frequency crypto markets"' Description : 'Scala

LvB 12 Jan 01, 2023
This is an easy python software which allows to sort images with faces by gender and after by age.

Gender-age Classifier This is an easy python software which allows to sort images with faces by gender and after by age. Usage First install Deepface

Claudio Ciccarone 6 Sep 17, 2022
Ranger deep learning optimizer rewrite to use newest components

Ranger21 - integrating the latest deep learning components into a single optimizer Ranger deep learning optimizer rewrite to use newest components Ran

Less Wright 266 Dec 28, 2022