Source code for NAACL 2021 paper "TR-BERT: Dynamic Token Reduction for Accelerating BERT Inference"

Related tags

Deep LearningTR-BERT
Overview

TR-BERT

Source code and dataset for "TR-BERT: Dynamic Token Reduction for Accelerating BERT Inference".

model

The code is based on huggaface's transformers. Thanks to them! We will release all the source code in the future.

Requirement

Install dependencies and apex:

pip3 install -r requirement.txt
pip3 install --editable transformers

Pretrained models

Download the DistilBERT-3layer and BERT-1024 from Google Drive/Tsinghua Cloud.

Classfication

Download the IMDB, Yelp, 20News datasets from Google Drive/Tsinghua Cloud.

Download the Hyperpartisan dataset, and randomly split it into train/dev/test set: python3 split_hyperpartisan.py

Train BERT/DistilBERT Model

Use flag --do train:

python3 run_classification.py  --task_name imdb  --model_type bert  --model_name_or_path bert-base-uncased --data_dir imdb --max_seq_length 512  --per_gpu_train_batch_size 8  --per_gpu_eval_batch_size 16 --gradient_accumulation_steps 4 --learning_rate 3e-5 --save_steps 2000  --num_train_epochs 5  --output_dir imdb_models/bert_base  --do_lower_case  --do_eval  --evaluate_during_training  --do_train

where task_name can be set as imdb/yelp_f/20news/hyperpartisan for different tasks and model type can be set as bert/distilbert for different models.

Compute Graident for Residual Strategy

Use flag --do_eval_grad.

python3 run_classification.py  --task_name imdb  --model_type bert  --model_name_or_path imdb_models/bert_base --data_dir imdb --max_seq_length 512  --per_gpu_train_batch_size 8  --per_gpu_eval_batch_size 8  --output_dir imdb_models/bert_base  --do_lower_case  --do_eval_grad

This step doesn't supoort data DataParallel or DistributedDataParallel currently and should be done in a single GPU.

Train the policy network solely

Start from the checkpoint from the task-specific fine-tuned model. Change model_type from bert to autobert, and run with flag --do_train --train_rl:

python3 run_classification.py  --task_name imdb  --model_type autobert  --model_name_or_path imdb_models/bert_base --data_dir imdb --max_seq_length 512  --per_gpu_train_batch_size 8  --per_gpu_eval_batch_size 8 --gradient_accumulation_steps 4 --learning_rate 3e-5 --save_steps 2000  --num_train_epochs 3  --output_dir imdb_models/auto_1  --do_lower_case  --do_train --train_rl --alpha 1 --guide_rate 0.5

where alpha is the harmonic coefficient for the length punishment and guide_rate is the proportion of imitation learning steps. model_type can be set as autobert/distilautobert for applying token reduction to BERT/DistilBERT.

Compute Logits for Knowledge Distilation

Use flag --do_eval_logits.

python3 run_classification.py  --task_name imdb  --model_type bert  --model_name_or_path imdb_models/bert_base --data_dir imdb --max_seq_length 512  --per_gpu_train_batch_size 8  --per_gpu_eval_batch_size 8  --output_dir imdb_models/bert_base  --do_lower_case  --do_eval_logits

This step doesn't supoort data DataParallel or DistributedDataParallel currently and should be done in a single GPU.

Train the whole network with both the task-specifc objective and RL objective

Start from the checkpoint from --train_rl model and run with flag --do_train --train_both --train_teacher:

python3 run_classification.py  --task_name imdb  --model_type autobert  --model_name_or_path imdb_models/auto_1 --data_dir imdb --max_seq_length 512  --per_gpu_train_batch_size 8  --per_gpu_eval_batch_size 1 --gradient_accumulation_steps 4 --learning_rate 3e-5 --save_steps 2000  --num_train_epochs 3  --output_dir imdb_models/auto_1_both  --do_lower_case  --do_train --train_both --train_teacher --alpha 1

Evaluate

Use flag --do_eval:

python3 run_classification.py  --task_name imdb  --model_type autobert  --model_name_or_path imdb_models/auto_1_both  --data_dir imdb --max_seq_length 512  --per_gpu_train_batch_size 8  --per_gpu_eval_batch_size 1  --output_dir imdb_models/auto_1_both  --do_lower_case  --do_eval --eval_all_checkpoints

When the batch size is more than 1 in evaluating, we will remain the same number of tokens for each instance in the same batch.

Initialize

For IMDB dataset, we find that when we directly initialize the selector with heuristic objective before train the policy network solely, we can get a bit better performance. For other datasets, this step makes little change. Run this step with flag --do_train --train_init:

python3 trans_imdb_rank.py
python3 run_classification.py  --task_name imdb  --model_type initbert  --model_name_or_path imdb_models/bert_base --data_dir imdb --max_seq_length 512  --per_gpu_train_batch_size 8  --per_gpu_eval_batch_size 8 --gradient_accumulation_steps 4 --learning_rate 3e-5 --save_steps 2000  --num_train_epochs 3  --output_dir imdb_models/bert_init  --do_lower_case  --do_train --train_init 

Question Answering

Download the SQuAD 2.0 dataset.

Download the MRQA dataset with our split] from Google Drive/Tsinghua Cloud.

Download the HotpotQA dataset from the Transformer-XH repository, where paragraphs are retrieved for each question according to TF-IDF, entity linking and hyperlink and re-ranked by BERT re-ranker.

Download the TriviaQA dataset, where paragraphs are re-rank by the linear passage re-ranker in DocQA.

Download the WikiHop dataset.

The whole training progress of question answer models is similiar to text classfication models, with flags --do_train, --do_train --train_rl, --do_train --train_both --train_teacher in turn. The codes of each dataset:

SQuAD: run_squad.py with flag version_2_with_negative

NewsQA / NaturalQA: run_mrqa.py

RACE: run_race_classify.py

HotpotQA: run_hotpotqa.py

TriviaQA: run_triviaqa.py

WikiHop: run_wikihop.py

Harmonic Coefficient Lambda

The example harmonic coefficients are shown as follows:

Dataset train_rl train_both
SQuAD 2.0 5 5
NewsQA 3 5
NaturalQA 2 2
RACE 0.5 0.1
YELP.F 2 0.5
20News 1 1
IMDB 1 1
HotpotQA 0.1 4
TriviaQA 0.5 1
Hyperparisan 0.01 0.01

Cite

If you use the code, please cite this paper:

@inproceedings{ye2021trbert,
  title={TR-BERT: Dynamic Token Reduction for Accelerating BERT Inference},
  author={Deming Ye, Yankai Lin, Yufei Huang, Maosong Sun},
  booktitle={Proceedings of NAACL 2021},
  year={2021}
}
Owner
THUNLP
Natural Language Processing Lab at Tsinghua University
THUNLP
🔎 Monitor deep learning model training and hardware usage from your mobile phone 📱

Monitor deep learning model training and hardware usage from mobile. 🔥 Features Monitor running experiments from mobile phone (or laptop) Monitor har

labml.ai 1.2k Dec 25, 2022
PyTorch implementation of ARM-Net: Adaptive Relation Modeling Network for Structured Data.

A ready-to-use framework of latest models for structured (tabular) data learning with PyTorch. Applications include recommendation, CRT prediction, healthcare analytics, and etc.

48 Nov 30, 2022
Learning kernels to maximize the power of MMD tests

Code for the paper "Generative Models and Model Criticism via Optimized Maximum Mean Discrepancy" (arXiv:1611.04488; published at ICLR 2017), by Douga

Danica J. Sutherland 201 Dec 17, 2022
FlexConv: Continuous Kernel Convolutions with Differentiable Kernel Sizes

FlexConv: Continuous Kernel Convolutions with Differentiable Kernel Sizes This repository contains the source code accompanying the paper: FlexConv: C

Robert-Jan Bruintjes 96 Dec 12, 2022
The 2nd place solution of 2021 google landmark retrieval on kaggle.

Leaderboard, taxonomy, and curated list of few-shot object detection papers.

229 Dec 13, 2022
A library for finding knowledge neurons in pretrained transformer models.

knowledge-neurons An open source repository replicating the 2021 paper Knowledge Neurons in Pretrained Transformers by Dai et al., and extending the t

EleutherAI 96 Dec 21, 2022
Wikidated : An Evolving Knowledge Graph Dataset of Wikidata’s Revision History

Wikidated Wikidated 1.0 is a dataset of Wikidata’s full revision history, which encodes changes between Wikidata revisions as sets of deletions and ad

Lukas Schmelzeisen 11 Aug 16, 2022
A Simple Framwork for CV Pre-training Model (SOCO, VirTex, BEiT)

A Simple Framwork for CV Pre-training Model (SOCO, VirTex, BEiT)

Sense-GVT 14 Jul 07, 2022
small collection of functions for neural networks

neurobiba other languages: RU small collection of functions for neural networks. very easy to use! Installation: pip install neurobiba See examples h

4 Aug 23, 2021
An official implementation of MobileStyleGAN in PyTorch

MobileStyleGAN: A Lightweight Convolutional Neural Network for High-Fidelity Image Synthesis Official PyTorch Implementation The accompanying videos c

Sergei Belousov 602 Jan 07, 2023
Code for Quantifying Ignorance in Individual-Level Causal-Effect Estimates under Hidden Confounding

🍐 quince Code for Quantifying Ignorance in Individual-Level Causal-Effect Estimates under Hidden Confounding 🍐 Installation $ git clone

Andrew Jesson 19 Jun 23, 2022
This repo contains the implementation of the algorithm proposed in Off-Belief Learning, ICML 2021.

Off-Belief Learning Introduction This repo contains the implementation of the algorithm proposed in Off-Belief Learning, ICML 2021. Environment Setup

Facebook Research 32 Jan 05, 2023
Image segmentation with private İstanbul Dataset

Image Segmentation This repo was created for academic research and test result. Repo will update after academic article online. This repo contains wei

İrem KÖMÜRCÜ 9 Dec 11, 2022
Build a medical knowledge graph based on Unified Language Medical System (UMLS)

UMLS-Graph Build a medical knowledge graph based on Unified Language Medical System (UMLS) Requisite Install MySQL Server 5.6 and import UMLS data int

Donghua Chen 6 Dec 25, 2022
Walk with fastai

Shield: This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Walk with fastai What is this p

Walk with fastai 124 Dec 10, 2022
Gym Threat Defense

Gym Threat Defense The Threat Defense environment is an OpenAI Gym implementation of the environment defined as the toy example in Optimal Defense Pol

Hampus Ramström 5 Dec 08, 2022
Geometric Vector Perceptrons --- a rotation-equivariant GNN for learning from biomolecular structure

Geometric Vector Perceptron Implementation of equivariant GVP-GNNs as described in Learning from Protein Structure with Geometric Vector Perceptrons b

Dror Lab 142 Dec 29, 2022
Constrained Language Models Yield Few-Shot Semantic Parsers

Constrained Language Models Yield Few-Shot Semantic Parsers This repository contains tools and instructions for reproducing the experiments in the pap

Microsoft 43 Nov 23, 2022
A minimal implementation of Gaussian process regression in PyTorch

pytorch-minimal-gaussian-process In search of truth, simplicity is needed. There exist heavy-weighted libraries, but as you know, we need to go bare b

Sangwoong Yoon 38 Nov 25, 2022
PyTorch implementation for Graph Contrastive Learning with Augmentations

Graph Contrastive Learning with Augmentations PyTorch implementation for Graph Contrastive Learning with Augmentations [poster] [appendix] Yuning You*

Shen Lab at Texas A&M University 382 Dec 15, 2022