Code for the ICCV'21 paper "Context-aware Scene Graph Generation with Seq2Seq Transformers"

Overview

ICCV'21 Context-aware Scene Graph Generation with Seq2Seq Transformers

Authors: Yichao Lu*, Himanshu Rai*, Cheng Chang*, Boris Knyazev†, Guangwei Yu, Shashank Shekhar†, Graham W. Taylor†, Maksims Volkovs

  • * Denotes equal contribution
  • † University of Guelph / Vector Institute

Prerequisites and Environment

  • pytorch-gpu 1.13.1
  • numpy 1.16.0
  • tqdm

All experiments were conducted on a 20-core Intel(R) Xeon(R) CPU E5-2630 v4 @2.20GHz and 4 NVIDIA V100 GPUs with 32GB GPU memory.

Dataset

Visual Genome

Download it here. Unzip it under the data folder. You should see a vg folder unzipped there. It contains .json annotations that suit the dataloader used in this repo.

Visual Relation Detection

See Images:VRD

Images

Visual Genome

Create a folder for all images:

# ROOT=path/to/cloned/repository
cd $ROOT/data/vg
mkdir VG_100K

Download Visual Genome images from the official page. Unzip all images (part 1 and part 2) into VG_100K/. There should be a total of 108249 files.

Visual Relation Detection

Create the vrd folder under data:

# ROOT=path/to/cloned/repository
cd $ROOT/data/vrd

Download the original annotation json files from here and unzip json_dataset.zip here. The images can be downloaded from here. Unzip sg_dataset.zip to create an sg_dataset folder in data/vrd. Next run the preprocessing scripts:

cd $ROOT
python tools/rename_vrd_with_numbers.py
python tools/convert_vrd_anno_to_coco_format.py

rename_vrd_with_numbers.py converts all non-jpg images (some images are in png or gif) to jpg, and renames them in the {:012d}.jpg format (e.g., "000000000001.jpg"). It also creates new relationship annotations other than the original ones. This is mostly to make things easier for the dataloader. The filename mapping from the original is stored in data/vrd/*_fname_mapping.json where "*" is either "train" or "val".

convert_vrd_anno_to_coco_format.py creates object detection annotations from the new annotations generated above, which are required by the dataloader during training.

Pre-trained Object Detection Models

Download pre-trained object detection models here. Unzip it under the root directory. Note: We do not include code for training object detectors. Please refer to the "(Optional) Training Object Detection Models" section in Large-Scale-VRD.pytorch for this.

Directory Structure

The final directories should look like:

|-- data
|   |-- detections_train.json
|   |-- detections_val.json
|   |-- new_annotations_train.json
|   |-- new_annotations_val.json
|   |-- objects.json
|   |-- predicates.json
|-- evaluation
|-- output
|   |-- pair_predicate_dict.dat
|   |-- train_data.dat
|   |-- valid_data.dat
|-- config.py
|-- core.py
|-- data_utils.py
|-- evaluation_utils.py
|-- feature_utils.py
|-- file_utils.py
|-- preprocess.py
|-- trainer.py
|-- transformer.py

Evaluating Pre-trained Relationship Detection models

DO NOT CHANGE anything in the provided config files(configs/xx/xxxx.yaml) even if you want to test with less or more than 8 GPUs. Use the environment variable CUDA_VISIBLE_DEVICES to control how many and which GPUs to use. Remove the --multi-gpu-test for single-gpu inference.

Visual Genome

NOTE: May require at least 64GB RAM to evaluate on the Visual Genome test set

We use three evaluation metrics for Visual Genome:

  1. SGDET: predict all the three labels and two boxes
  2. SGCLS: predict subject, object and predicate labels given ground truth subject and object boxes
  3. PRDCLS: predict predicate labels given ground truth subject and object boxes and labels

Training Scene Graph Generation Models

With the following command lines, the training results (models and logs) should be in $ROOT/Outputs/xxx/ where xxx is the .yaml file name used in the command without the ".yaml" extension. If you want to test with your trained models, simply run the test commands described above by setting --load_ckpt as the path of your trained models.

Visual Relation Detection

To train our scene graph generation model on the VRD dataset, run

python preprocess.py

python trainer.py --num-encoder-layers 4 --num-decoder-layers 2 --nhead 4 --num-epochs 500 --learning-rate 1e-3

python preprocess_evaluation.py

python write_prediction.py

mv prediction.txt evaluation/vrd/

cd evaluation/vrd

python run_all_for_vrd.py prediction.txt

Visual Genome

To train our scene graph generation model on the VG dataset, download the json files from https://visualgenome.org/api/v0/api_home.html, put the extracted files under data and then run

python preprocess.py

python trainer.py --num-encoder-layers 4 --num-decoder-layers 2 --nhead 4 --num-epochs 2000 --learning-rate 1e-3

python preprocess_evaluation.py

python write_prediction.py

mv prediction.txt evaluation/vg/

cd evaluation/vg

python run_all.py prediction.txt

Acknowledgements

This repository uses code based on the ContrastiveLosses4VRD Ji Zhang, Neural-Motifs source code from Rowan Zellers.

Citation

If you find this code useful in your research, please cite the following paper:

@inproceedings{lu2021seq2seq,
  title={Context-aware Scene Graph Generation with Seq2Seq Transformers},
  author={Yichao Lu, Himanshu Rai, Jason Chang, Boris Knyazev, Guangwei Yu, Shashank Shekhar, Graham W. Taylor, Maksims Volkovs},
  booktitle={ICCV},
  year={2021}
}
Owner
Layer6 Labs
Research repositories from Layer 6 AI.
Layer6 Labs
InDuDoNet+: A Model-Driven Interpretable Dual Domain Network for Metal Artifact Reduction in CT Images

InDuDoNet+: A Model-Driven Interpretable Dual Domain Network for Metal Artifact Reduction in CT Images Hong Wang, Yuexiang Li, Haimiao Zhang, Deyu Men

Hong Wang 4 Dec 27, 2022
An alarm clock coded in Python 3 with Tkinter

Tkinter-Alarm-Clock An alarm clock coded in Python 3 with Tkinter. Run python3 Tkinter Alarm Clock.py in a terminal if you have Python 3. NOTE: This p

CodeMaster7000 1 Dec 25, 2021
Understanding Convolutional Neural Networks from Theoretical Perspective via Volterra Convolution

nnvolterra Run Code Compile first: make compile Run all codes: make all Test xconv: make npxconv_test MNIST dataset needs to be downloaded, converted

1 May 24, 2022
Rapid experimentation and scaling of deep learning models on molecular and crystal graphs.

LitMatter A template for rapid experimentation and scaling deep learning models on molecular and crystal graphs. How to use Clone this repository and

Nathan Frey 32 Dec 06, 2022
ALIbaba's Collection of Encoder-decoders from MinD (Machine IntelligeNce of Damo) Lab

AliceMind AliceMind: ALIbaba's Collection of Encoder-decoders from MinD (Machine IntelligeNce of Damo) Lab This repository provides pre-trained encode

Alibaba 1.4k Jan 01, 2023
Framework to build and train RL algorithms

RayLink RayLink is a RL framework used to build and train RL algorithms. RayLink was used to build a RL framework, and tested in a large-scale multi-a

Bytedance Inc. 32 Oct 07, 2022
《Train in Germany, Test in The USA: Making 3D Object Detectors Generalize》(CVPR 2020)

Train in Germany, Test in The USA: Making 3D Object Detectors Generalize This paper has been accpeted by Conference on Computer Vision and Pattern Rec

Xiangyu Chen 101 Jan 02, 2023
This is RFA-Toolbox, a simple and easy-to-use library that allows you to optimize your neural network architectures using receptive field analysis (RFA) and create graph visualizations of your architecture.

ReceptiveFieldAnalysisToolbox This is RFA-Toolbox, a simple and easy-to-use library that allows you to optimize your neural network architectures usin

84 Nov 23, 2022
Official implementation of cosformer-attention in cosFormer: Rethinking Softmax in Attention

cosFormer Official implementation of cosformer-attention in cosFormer: Rethinking Softmax in Attention Update log 2022/2/28 Add core code License This

120 Dec 15, 2022
[AAAI22] Reliable Propagation-Correction Modulation for Video Object Segmentation

Reliable Propagation-Correction Modulation for Video Object Segmentation (AAAI22) Preview version paper of this work is available at: https://arxiv.or

Xiaohao Xu 70 Dec 04, 2022
Example how to deploy deep learning model with aiohttp.

aiohttp-demos Demos for aiohttp project. Contents Imagetagger Deep Learning Image Classifier URL shortener Toxic Comments Classifier Moderator Slack B

aio-libs 661 Jan 04, 2023
Breast-Cancer-Prediction

Breast-Cancer-Prediction Trying to predict whether the cancer is benign or malignant using REGRESSION MODELS in Python. Team Members NAME ROLL-NUMBER

Shyamdev Krishnan J 3 Feb 18, 2022
Text-to-Music Retrieval using Pre-defined/Data-driven Emotion Embeddings

Text2Music Emotion Embedding Text-to-Music Retrieval using Pre-defined/Data-driven Emotion Embeddings Reference Emotion Embedding Spaces for Matching

Minz Won 50 Dec 05, 2022
A bare-bones Python library for quality diversity optimization.

pyribs Website Source PyPI Conda CI/CD Docs Docs Status Twitter pyribs.org GitHub docs.pyribs.org A bare-bones Python library for quality diversity op

ICAROS 127 Jan 06, 2023
Official repository for CVPR21 paper "Deep Stable Learning for Out-Of-Distribution Generalization".

StableNet StableNet is a deep stable learning method for out-of-distribution generalization. This is the official repo for CVPR21 paper "Deep Stable L

120 Dec 28, 2022
LBK 35 Dec 26, 2022
Neural Fixed-Point Acceleration for Convex Optimization

Licensing The majority of neural-scs is licensed under the CC BY-NC 4.0 License, however, portions of the project are available under separate license

Facebook Research 27 Oct 06, 2022
A Peer-to-peer Platform for Secure, Privacy-preserving, Decentralized Data Science

PyGrid is a peer-to-peer network of data owners and data scientists who can collectively train AI models using PySyft. PyGrid is also the central serv

OpenMined 615 Jan 03, 2023
A static analysis library for computing graph representations of Python programs suitable for use with graph neural networks.

python_graphs This package is for computing graph representations of Python programs for machine learning applications. It includes the following modu

Google Research 258 Dec 29, 2022
Husein pet projects in here!

project-suka-suka Husein pet projects in here! List of projects mysejahtera-density. Generate resolution points using meshgrid and request each points

HUSEIN ZOLKEPLI 47 Dec 09, 2022