A PyTorch Implementation of the paper - Choi, Woosung, et al. "Investigating u-nets with various intermediate blocks for spectrogram-based singing voice separation." 21th International Society for Music Information Retrieval Conference, ISMIR. 2020.

Overview

Investigating U-NETS With Various Intermediate Blocks For Spectrogram-based Singing Voice Separation

A Pytorch Implementation of the paper "Investigating U-NETS With Various Intermediate Blocks For Spectrogram-based Singing Voice Separation (ISMIR 2020)"

Installation

conda install pytorch=1.6 cudatoolkit=10.2 -c pytorch
conda install -c conda-forge ffmpeg librosa
conda install -c anaconda jupyter
pip install musdb museval pytorch_lightning effortless_config wandb pydub nltk spacy 

Dataset

  1. Download Musdb18
  2. Unzip files
  3. We recommend you to use the wav file mode for the fast data preparation.
    musdbconvert path/to/musdb-stems-root path/to/new/musdb-wav-root

Demonstration: A Pretrained Model (TFC_TDF_Net (large))

Colab Link

Tutorial

1. activate your conda

conda activate yourcondaname

2. Training a default UNet with TFC_TDFs

python main.py --musdb_root ../repos/musdb18_wav --musdb_is_wav True --filed_mode True --target_name vocals --mode train --gpus 4 --distributed_backend ddp --sync_batchnorm True --pin_memory True --num_workers 32 --precision 16 --run_id debug --optimizer adam --lr 0.001 --save_top_k 3 --patience 100 --min_epochs 1000 --max_epochs 2000 --n_fft 2048 --hop_length 1024 --num_frame 128  --train_loss spec_mse --val_loss raw_l1 --model tfc_tdf_net  --spec_est_mode mapping --spec_type complex --n_blocks 7 --internal_channels 24  --n_internal_layers 5 --kernel_size_t 3 --kernel_size_f 3 --min_bn_units 16 --tfc_tdf_activation relu  --first_conv_activation relu --last_activation identity --seed 2020

3. Evaluation

After training is done, checkpoints are saved in the following directory.

etc/modelname/run_id/*.ckpt

For evaluation,

python main.py --musdb_root ../repos/musdb18_wav --musdb_is_wav True --filed_mode True --target_name vocals --mode eval --gpus 1 --pin_memory True --num_workers 64 --precision 32 --run_id debug --batch_size 4 --n_fft 2048 --hop_length 1024 --num_frame 128 --train_loss spec_mse --val_loss raw_l1 --model tfc_tdf_net --spec_est_mode mapping --spec_type complex --n_blocks 7 --internal_channels 24 --n_internal_layers 5 --kernel_size_t 3 --kernel_size_f 3 --min_bn_units 16 --tfc_tdf_activation relu --first_conv_activation relu --last_activation identity --log wandb --ckpt vocals_epoch=891.ckpt

Below is the result.

wandb:          test_result/agg/vocals_SDR 6.954695
wandb:   test_result/agg/accompaniment_SAR 14.3738075
wandb:          test_result/agg/vocals_SIR 15.5527
wandb:   test_result/agg/accompaniment_SDR 13.561705
wandb:   test_result/agg/accompaniment_ISR 22.69328
wandb:   test_result/agg/accompaniment_SIR 18.68421
wandb:          test_result/agg/vocals_SAR 6.77698
wandb:          test_result/agg/vocals_ISR 12.45371

4. Interactive Report (wandb)

wandb report

Indermediate Blocks

Please see this document.

How to use

1. Training

1.1. Intermediate Block independent Parameters

1.1.A. General Parameters
  • --musdb_root musdb path
  • --musdb_is_wav whether the path contains wav files or not
  • --filed_mode whether you want to use filed mode or not. recommend to use it for the fast data preparation.
  • --target_name one of vocals, drum, bass, other
1.1.B. Training Environment
  • --mode train or eval
  • --gpus number of gpus
    • (WARN) gpus > 1 might be problematic when evaluating models.
  • distributed_backend use this option only when you are using multi-gpus. distributed backend, one of ddp, dp, ... we recommend you to use ddp.
  • --sync_batchnorm True only when you are using ddp
  • --pin_memory
  • --num_workers
  • --precision 16 or 32
  • --dev_mode whether you want a developement mode or not. dev mode is much faster because it uses only a small subset of the dataset.
  • --run_id (optional) directory path where you want to store logs and etc. if none then the timestamp.
  • --log True for default pytorch lightning log. wandb is also available.
  • --seed random seed for a deterministic result.
1.1.C. Training hyperparmeters
  • --batch_size trivial :)
  • --optimizer adam, rmsprop, etc
  • --lr learning rate
  • --save_top_k how many top-k epochs you want to save the training state (criterion: validation loss)
  • --patience early stop control parameter. see pytorch lightning docs.
  • --min_epochs trivial :)
  • --max_epochs trivial :)
  • --model
    • tfc_tdf_net
    • tfc_net
    • tdc_net
1.1.D. Fourier parameters
  • --n_fft
  • --hop_length
  • num_frame number of frames (time slices)
1.1.F. criterion
  • --train_loss: spec_mse, raw_l1, etc...
  • --val_loss: spec_mse, raw_l1, etc...

1.2. U-net Parameters

  • --n_blocks: number of intermediate blocks. must be an odd integer. (default=7)
  • --input_channels:
    • if you use two-channeled complex-valued spectrogram, then 4
    • if you use two-channeled manginutde spectrogram, then 2
  • --internal_channels: number of internal chennels (default=24)
  • --first_conv_activation: (default='relu')
  • --last_activation: (default='sigmoid')
  • --t_down_layers: list of layer where you want to doubles/halves the time resolution. if None, ds/us applied to every single layer. (default=None)
  • --f_down_layers: list of layer where you want to doubles/halves the frequency resolution. if None, ds/us applied to every single layer. (default=None)

1.3. SVS Framework

  • --spec_type: type of a spectrogram. ['complex', 'magnitude']

  • --spec_est_mode: spectrogram estimation method. ['mapping', 'masking']

  • CaC Framework

    • you can use cac framework [1] by setting
      • --spec_type complex --spec_est_mode mapping --last_activation identity
  • Mag-only Framework

    • if you want to use the traditional magnitude-only estimation with sigmoid, then try
      • --spec_type magnitude --spec_est_mode masking --last_activation sigmoid
    • you can also change the last activation as follows
      • --spec_type magnitude --spec_est_mode masking --last_activation relu
  • Alternatives

    • you can build an svs framework with any combination of these parameters
    • e.g. --spec_type complex --spec_est_mode masking --last_activation tanh

1.4. Block-dependent Parameters

1.4.A. TDF Net
  • --bn_factor: bottleneck factor $bn$ (default=16)
  • --min_bn_units: when target frequency domain size is too small, we just use this value instead of $\frac{f}{bn}$. (default=16)
  • --bias: (default=False)
  • --tdf_activation: activation function of each block (default=relu)

1.4.B. TDC Net
  • --n_internal_layers: number of 1-d CNNs in a block (default=5)
  • --kernel_size_f: size of kernel of frequency-dimension (default=3)
  • --tdc_activation: activation function of each block (default=relu)

1.4.C. TFC Net
  • --n_internal_layers: number of 1-d CNNs in a block (default=5)
  • --kernel_size_t: size of kernel of time-dimension (default=3)
  • --kernel_size_f: size of kernel of frequency-dimension (default=3)
  • --tfc_activation: activation function of each block (default=relu)

1.4.D. TFC_TDF Net
  • --n_internal_layers: number of 1-d CNNs in a block (default=5)
  • --kernel_size_t: size of kernel of time-dimension (default=3)
  • --kernel_size_f: size of kernel of frequency-dimension (default=3)
  • --tfc_tdf_activation: activation function of each block (default=relu)
  • --bn_factor: bottleneck factor $bn$ (default=16)
  • --min_bn_units: when target frequency domain size is too small, we just use this value instead of $\frac{f}{bn}$. (default=16)
  • --tfc_tdf_bias: (default=False)

1.4.E. TDC_RNN Net
  • '--n_internal_layers' : number of 1-d CNNs in a block (default=5)

  • '--kernel_size_f' : size of kernel of frequency-dimension (default=3)

  • '--bn_factor_rnn' : (default=16)

  • '--num_layers_rnn' : (default=1)

  • '--bias_rnn' : bool, (default=False)

  • '--min_bn_units_rnn' : (default=16)

  • '--bn_factor_tdf' : (default=16)

  • '--bias_tdf' : bool, (default=False)

  • '--tdc_rnn_activation' : (default='relu')

current bug - cuda error occurs when tdc_rnn net with precision 16

Reproducible Experimental Results

  • TFC_TDF_large
    • parameters
    --musdb_root ../repos/musdb18_wav
    --musdb_is_wav True
    --filed_mode True
    
    --gpus 4
    --distributed_backend ddp
    --sync_batchnorm True
    
    --num_workers 72
    --train_loss spec_mse
    --val_loss raw_l1
    --batch_size 12
    --precision 16
    --pin_memory True
    --num_worker 72         
    --save_top_k 3
    --patience 200
    --run_id debug_large
    --log wandb
    --min_epochs 2000
    --max_epochs 3000
    
    --optimizer adam
    --lr 0.001
    
    --model tfc_tdf_net
    --n_fft 4096
    --hop_length 1024
    --num_frame 128
    --spec_type complex
    --spec_est_mode mapping
    --last_activation identity
    --n_blocks 9
    --internal_channels 24
    --n_internal_layers 5
    --kernel_size_t 3 
    --kernel_size_f 3 
    --tfc_tdf_bias True
    --seed 2020
    
    
    • training
    python main.py --musdb_root ../repos/musdb18_wav --musdb_is_wav True --filed_mode True --gpus 4 --distributed_backend ddp --sync_batchnorm True --num_workers 72 --train_loss spec_mse --val_loss raw_l1 --batch_size 24 --precision 16 --pin_memory True --num_worker 72 --save_top_k 3 --patience 200 --run_id debug_large --log wandb --min_epochs 2000 --max_epochs 3000 --optimizer adam --lr 0.001 --model tfc_tdf_net --n_fft 4096 --hop_length 1024 --num_frame 128 --spec_type complex --spec_est_mode mapping --last_activation identity --n_blocks 9 --internal_channels 24 --n_internal_layers 5 --kernel_size_t 3 --kernel_size_f 3 --tfc_tdf_bias True --seed 2020
    • evaluation result (epoch 2007)
      • SDR 8.029
      • ISR 13.708
      • SIR 16.409
      • SAR 7.533

Interactive Report (wandb)

wandb report

You can cite this paper as follows:

@inproceedings{choi_2020, Author = {Choi, Woosung and Kim, Minseok and Chung, Jaehwa and Lee, Daewon and Jung, Soonyoung}, Booktitle = {21th International Society for Music Information Retrieval Conference}, Editor = {ISMIR}, Month = {OCTOBER}, Title = {Investigating U-Nets with various intermediate blocks for spectrogram-based singing voice separation.}, Year = {2020}}

Reference

[1] Woosung Choi, Minseok Kim, Jaehwa Chung, DaewonLee, and Soonyoung Jung, “Investigating u-nets with various intermediate blocks for spectrogram-based singingvoice separation.,” in 21th International Society for Music Information Retrieval Conference, ISMIR, Ed., OCTOBER 2020.

Owner
Woosung Choi
WooSung Choi Ph.d candidate @IELab-AT-KOREA-UNIV Seoul, Korea
Woosung Choi
An SE(3)-invariant autoencoder for generating the periodic structure of materials

Crystal Diffusion Variational AutoEncoder This software implementes Crystal Diffusion Variational AutoEncoder (CDVAE), which generates the periodic st

Tian Xie 94 Dec 10, 2022
Toolkit for collecting and applying prompts

PromptSource Promptsource is a toolkit for collecting and applying prompts to NLP datasets. Promptsource uses a simple templating language to programa

BigScience Workshop 998 Jan 03, 2023
Source code for The Power of Many: A Physarum Swarm Steiner Tree Algorithm

Physarum-Swarm-Steiner-Algo Source code for The Power of Many: A Physarum Steiner Tree Algorithm Code implements ideas from the following papers: Sher

Sheryl Hsu 2 Mar 28, 2022
A Weakly Supervised Amodal Segmenter with Boundary Uncertainty Estimation

Paper Khoi Nguyen, Sinisa Todorovic "A Weakly Supervised Amodal Segmenter with Boundary Uncertainty Estimation", accepted to ICCV 2021 Our code is mai

Khoi Nguyen 5 Aug 14, 2022
DFM: A Performance Baseline for Deep Feature Matching

DFM: A Performance Baseline for Deep Feature Matching Python (Pytorch) and Matlab (MatConvNet) implementations of our paper DFM: A Performance Baselin

143 Jan 02, 2023
A set of tools for creating and testing machine learning features, with a scikit-learn compatible API

Feature Forge This library provides a set of tools that can be useful in many machine learning applications (classification, clustering, regression, e

Machinalis 380 Nov 05, 2022
Implementation of Graph Transformer in Pytorch, for potential use in replicating Alphafold2

Graph Transformer - Pytorch Implementation of Graph Transformer in Pytorch, for potential use in replicating Alphafold2. This was recently used by bot

Phil Wang 97 Dec 28, 2022
Artifacts for paper "MMO: Meta Multi-Objectivization for Software Configuration Tuning"

MMO: Meta Multi-Objectivization for Software Configuration Tuning This repository contains the data and code for the following paper that is currently

0 Nov 17, 2021
Code for "Solving Graph-based Public Good Games with Tree Search and Imitation Learning"

Code for "Solving Graph-based Public Good Games with Tree Search and Imitation Learning" This is the code for the paper Solving Graph-based Public Goo

Victor-Alexandru Darvariu 3 Dec 05, 2022
Code for Domain Adaptive Video Segmentation via Temporal Consistency Regularization in ICCV 2021

Domain Adaptive Video Segmentation via Temporal Consistency Regularization Updates 08/2021: check out our domain adaptation for sematic segmentation p

36 Dec 12, 2022
Pytorch implementation of NEGEV method. Paper: "Negative Evidence Matters in Interpretable Histology Image Classification".

Pytorch 1.10.0 code for: Negative Evidence Matters in Interpretable Histology Image Classification (https://arxiv. org/abs/xxxx.xxxxx) Citation: @arti

Soufiane Belharbi 4 Dec 01, 2022
Model-free Vehicle Tracking and State Estimation in Point Cloud Sequences

Model-free Vehicle Tracking and State Estimation in Point Cloud Sequences 1. Introduction This project is for paper Model-free Vehicle Tracking and St

TuSimple 92 Jan 03, 2023
HiddenMarkovModel implements hidden Markov models with Gaussian mixtures as distributions on top of TensorFlow

Class HiddenMarkovModel HiddenMarkovModel implements hidden Markov models with Gaussian mixtures as distributions on top of TensorFlow 2.0 Installatio

Susara Thenuwara 2 Nov 03, 2021
Tf alloc - Simplication of GPU allocation for Tensorflow2

tf_alloc Simpliying GPU allocation for Tensorflow Developer: korkite (Junseo Ko)

Junseo Ko 3 Feb 10, 2022
BanditPAM: Almost Linear-Time k-Medoids Clustering

BanditPAM: Almost Linear-Time k-Medoids Clustering This repo contains a high-performance implementation of BanditPAM from BanditPAM: Almost Linear-Tim

254 Dec 12, 2022
An easy way to build PyTorch datasets. Modularly build datasets and automatically cache processed results

EasyDatas An easy way to build PyTorch datasets. Modularly build datasets and automatically cache processed results Installation pip install git+https

Ximing Yang 4 Dec 14, 2021
The sixth place winning solution (6/220) in 2021 Gaofen Challenge.

SwinTransformer + OBBDet The sixth place winning solution (6/220) in the track of Fine-grained Object Recognition in High-Resolution Optical Images, 2

ming71 46 Dec 02, 2022
Auditing Black-Box Prediction Models for Data Minimization Compliance

Data-Minimization-Auditor An auditing tool for model-instability based data minimization that is introduced in "Auditing Black-Box Prediction Models f

Bashir Rastegarpanah 2 Mar 24, 2022
A curated list of neural rendering resources.

Awesome-of-Neural-Rendering A curated list of neural rendering and related resources. Please feel free to pull requests or open an issue to add papers

Zhiwei ZHANG 43 Dec 09, 2022
ECCV18 Workshops - Enhanced SRGAN. Champion PIRM Challenge on Perceptual Super-Resolution. The training codes are in BasicSR.

ESRGAN (Enhanced SRGAN) [ 🚀 BasicSR] [Real-ESRGAN] ✨ New Updates. We have extended ESRGAN to Real-ESRGAN, which is a more practical algorithm for rea

Xintao 4.7k Jan 02, 2023