Create images and texts with the First Order Generative Adversarial Networks

Overview

First Order Divergence for training GANs

This repository contains code accompanying the paper First Order Generative Advesarial Netoworks

The majority of the code was copied from the repository https://github.com/bioinf-jku/TTUR

First Order Wasserstein Divergence GAN

The key added value of this code is its implementation two GANS that minimize not the KL-divergence or the WGAN-GP divergence, but the First Order Wasserstein Divergence, leading to better stability and perfomance.

Frechet Inception Distance (FID)

The FID is the performance measure used to evaluate the experiments in the paper. There, a detailed description can be found in the experiment section as well as in the the appendix in section A1.

In short: The Frechet distance between two multivariate Gaussians X_1 ~ N(mu_1, C_1) and X_2 ~ N(mu_2, C_2) is

                   d^2 = ||mu_1 - mu_2||^2 + Tr(C_1 + C_2 - 2*sqrt(C_1*C_2)).

The FID is calculated by assuming that X_1 and X_2 are the activations of the pool_3 layer of the inception model (see below) for generated samples and real world samples respectivly.

Compatibility notice

Previous versions of this repository contained two implementations to calculate the FID, a "unbatched" and a "batched" version. The "unbatched" version should not be used anymore. If you've downloaded this code previously, please update it immediately to the new version. The old version included a bug!

Provided Code

Requirements: TF 1.1, Python 3.x, for faster JSD estimation in language model, compile the language model code.

fid.py

This file contains the implementation of all necessary functions to calculate the FID. It can be used either as a python module imported into your own code, or as a standalone script to calculate the FID between precalculated (training set) statistics and a directory full of images, or between two directories of images.

To compare directories with pre-calculated statistics (e.g. the ones from http://bioinf.jku.at/research/ttur/), use:

fid.py /path/to/images /path/to/precalculated_stats.npz

To compare two directories, use

fid.py /path/to/images /path/to/other_images

See fid.py --help for more details.

fid_example.py

Example code to show the usage of fid.py in your own Python scripts.

precalc_stats_example.py

Example code to show how to calculate and save training set statistics.

WGAN_GP

Improved WGAN (WGAN-GP) implementation forked from https://github.com/igul222/improved_wgan_training with added FID evaluation for the image model and switchable TTUR/orig settings. Lanuage model with JSD Tensorboard logging and switchable TTUR/orig settings.

Precalculated Statistics for FID calculation

Precalculated statistics for datasets

are provided at: http://bioinf.jku.at/research/ttur/

Additional Links

For FID evaluation download the Inception modelf from http://download.tensorflow.org/models/image/imagenet/inception-2015-12-05.tgz

The cropped CelebA dataset can be downloaded here http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html

To download the LSUN bedroom dataset go to: http://www.yf.io/p/lsun

The 64x64 downsampled ImageNet training and validation datasets can be found here http://image-net.org/small/download.php

Owner
Zalando Research
Repositories of the research branch of Zalando SE
Zalando Research
Official implementation of CATs: Cost Aggregation Transformers for Visual Correspondence NeurIPS'21

CATs: Cost Aggregation Transformers for Visual Correspondence NeurIPS'21 For more information, check out the paper on [arXiv]. Training with different

Sunghwan Hong 120 Jan 04, 2023
General purpose GPU compute framework for cross vendor graphics cards (AMD, Qualcomm, NVIDIA & friends)

General purpose GPU compute framework for cross vendor graphics cards (AMD, Qualcomm, NVIDIA & friends). Blazing fast, mobile-enabled, asynchronous and optimized for advanced GPU data processing usec

The Kompute Project 1k Jan 06, 2023
Pytorch Implementation for CVPR2018 Paper: Learning to Compare: Relation Network for Few-Shot Learning

LearningToCompare Pytorch Implementation for Paper: Learning to Compare: Relation Network for Few-Shot Learning Howto download mini-imagenet and make

Jackie Loong 246 Dec 19, 2022
Instant-Teaching: An End-to-End Semi-Supervised Object Detection Framework

This repo is the official implementation of "Instant-Teaching: An End-to-End Semi-Supervised Object Detection Framework". @inproceedings{zhou2021insta

34 Dec 31, 2022
Space Invaders For Python

Space-Invaders Just download or clone the git repository. To run the Space Invader game you need to have pyhton installed in you system. If you dont h

Fei 5 Jul 27, 2022
📚 A collection of all the Deep Learning Metrics that I came across which are not accuracy/loss.

📚 A collection of all the Deep Learning Metrics that I came across which are not accuracy/loss.

Rahul Vigneswaran 1 Jan 17, 2022
Implementation of Enformer, Deepmind's attention network for predicting gene expression, in Pytorch

Enformer - Pytorch (wip) Implementation of Enformer, Deepmind's attention network for predicting gene expression, in Pytorch. The original tensorflow

Phil Wang 235 Dec 27, 2022
Lite-HRNet: A Lightweight High-Resolution Network

LiteHRNet Benchmark 🔥 🔥 Based on MMsegmentation 🔥 🔥 Cityscapes FCN resize concat config mIoU last mAcc last eval last mIoU best mAcc best eval bes

16 Dec 12, 2022
A simple PyTorch Implementation of Generative Adversarial Networks, focusing on anime face drawing.

AnimeGAN A simple PyTorch Implementation of Generative Adversarial Networks, focusing on anime face drawing. Randomly Generated Images The images are

Jie Lei 雷杰 1.2k Jan 03, 2023
Benchmarks for the Optimal Power Flow Problem

Power Grid Lib - Optimal Power Flow This benchmark library is curated and maintained by the IEEE PES Task Force on Benchmarks for Validation of Emergi

A Library of IEEE PES Power Grid Benchmarks 207 Dec 08, 2022
Codes for NeurIPS 2021 paper "Adversarial Neuron Pruning Purifies Backdoored Deep Models"

Adversarial Neuron Pruning Purifies Backdoored Deep Models Code for NeurIPS 2021 "Adversarial Neuron Pruning Purifies Backdoored Deep Models" by Dongx

Dongxian Wu 31 Dec 11, 2022
A curated list of Generative Deep Art projects, tools, artworks, and models

Generative Deep Art A curated list of Generative Deep Art projects, tools, artworks, and models Inbox Get started with making AI art in 2022 – deeplea

Filipe Calegario 251 Jan 03, 2023
ULMFiT for Genomic Sequence Data

Genomic ULMFiT This is an implementation of ULMFiT for genomics classification using Pytorch and Fastai. The model architecture used is based on the A

Karl 276 Dec 12, 2022
Code for the Image similarity challenge.

ISC 2021 This repository contains code for the Image Similarity Challenge 2021. Getting started The docs subdirectory has step-by-step instructions on

Facebook Research 173 Dec 12, 2022
sequitur is a library that lets you create and train an autoencoder for sequential data in just two lines of code

sequitur sequitur is a library that lets you create and train an autoencoder for sequential data in just two lines of code. It implements three differ

Jonathan Shobrook 305 Dec 21, 2022
PyTorch implementation of our ICCV 2021 paper Intrinsic-Extrinsic Preserved GANs for Unsupervised 3D Pose Transfer.

Unsupervised_IEPGAN This is the PyTorch implementation of our ICCV 2021 paper Intrinsic-Extrinsic Preserved GANs for Unsupervised 3D Pose Transfer. Ha

25 Oct 26, 2022
A concise but complete implementation of CLIP with various experimental improvements from recent papers

x-clip (wip) A concise but complete implementation of CLIP with various experimental improvements from recent papers Install $ pip install x-clip Usag

Phil Wang 515 Dec 26, 2022
This is my research project for the Irving Center for Cancer Dynamics/Azizi Lab, Columbia University.

bayesian_uncertainty This is my research project for the Irving Center for Cancer Dynamics/Azizi Lab, Columbia University. In this project I build a s

Max David Gupta 1 Feb 13, 2022
MIM: MIM Installs OpenMMLab Packages

MIM provides a unified API for launching and installing OpenMMLab projects and their extensions, and managing the OpenMMLab model zoo.

OpenMMLab 254 Jan 04, 2023
Safe Local Motion Planning with Self-Supervised Freespace Forecasting, CVPR 2021

Safe Local Motion Planning with Self-Supervised Freespace Forecasting By Peiyun Hu, Aaron Huang, John Dolan, David Held, and Deva Ramanan Citing us Yo

Peiyun Hu 90 Dec 01, 2022