[CVPR2021] Look before you leap: learning landmark features for one-stage visual grounding.

Overview

LBYL-Net

This repo implements paper Look Before You Leap: Learning Landmark Features For One-Stage Visual Grounding CVPR 2021.


Getting Started

Prerequisites

  • python 3.7
  • pytorch 10.0
  • cuda 10.0
  • gcc 4.92 or above

Installation

  1. Then clone the repo and install dependencies.
    git clone https://github.com/svip-lab/LBYLNet.git
    cd LBYLNet
    pip install requirements.txt 
  2. You also need to install our landmark feature convolution:
    cd ext
    git clone https://github.com/hbb1/landmarkconv.git
    cd landmarkconv/lib/layers
    python setup.py install --user
  3. We follow dataset structure DMS and FAOA. For convience, we have pack them togather, including ReferitGame, RefCOCO, RefCOCO+, RefCOCOg.
    bash data/refer/download_data.sh ./data/refer
  4. download the generated index files and place them in ./data/refer. Available at [Gdrive], [One Drive] .
  5. download the pretained model of YOLOv3.
    wget -P ext https://pjreddie.com/media/files/yolov3.weights

Training and Evaluation

By default, we use 2 gpus and batchsize 64 with DDP (distributed data-parallel). We have provided several configurations and training log for reproducing our results. If you want to use different hyperparameters or models, you may create configs for yourself. Here are examples:

  • For distributed training with gpus :

    CUDA_VISIBLE_DEVICES=0,1 python train.py lbyl_lstm_referit_batch64  --workers 8 --distributed --world_size 1  --dist_url "tcp://127.0.0.1:60006"
  • If you use single gpu or won't use distributed training (make sure to adjust the batchsize in the corresponding config file to match your devices):

    CUDA_VISIBLE_DEVICES=0, python train.py lbyl_lstm_referit_batch64  --workers 8
  • For evaluation:

    CUDA_VISIBLE_DEVICES=0, python evaluate.py lbyl_lstm_referit_batch64 --testiter 100 --split val

Trained Models

We provide the our retrained models with this re-organized codebase and provide their checkpoints and logs for reproducing the results. To use our trained models, download them from the [Gdrive] and save them into directory cache. Then the file path is expected to be <LBYLNet dir>/cache/nnet/<config>/<dataset>/<config>_100.pkl

Notice: The reproduced performances are occassionally higher or lower (within a reasonable range) than the results reported in the paper.

In this repo, we provide the peformance of our LBYL-Nets below. You can also find the details on <LBYLNet dir>/results and <LBYLNet dir>/logs.

  • Performance on ReferitGame ([email protected]).

    Dataset Langauge Split Papar Reproduce
    ReferitGame LSTM test 65.48 65.98
    BERT test 67.47 68.48
  • Performance on RefCOCO ([email protected]).

    Dataset Langauge Split Papar Reproduce
    RefCOCO LSTM
    testA 82.18 82.48
    testB 71.91 71.76
    BERT
    testA 82.91 82.82
    testB 74.15 72.82
  • Performance on RefCOCO+ ([email protected]).

    Dataset Langauge Split Papar Reproduce
    RefCOCO+ LSTM val 66.64 66.71
    testA 73.21 72.63
    testB 56.23 55.88
    BERT val 68.64 68.76
    testA 73.38 73.73
    testB 59.49 59.62
  • Performance on RefCOCOg ([email protected]).

    Dataset Langauge Split Papar Reproduce
    RefCOCOg LSTM val 58.72 60.03
    BERT val 62.70 63.20

Demo

We also provide demo scripts to test if the repo is corretly installed. After installing the repo and download the pretained weights, you should be able to use the LBYL-Net to ground your own images.

python demo.py

you can change the model, image or phrase in the demo.py. You will see the output image in imgs/demo_out.jpg.

#!/usr/bin/env python
import cv2
import torch
from core.test.test import _visualize
from core.groundors import Net 
# pick one model
cfg_file = "lbyl_bert_unc+_batch64"
detector = Net(cfg_file, iter=100)
# inference
image = cv2.imread('imgs/demo.jpeg')
phrase = 'the green gaint'
bbox = detector(image, phrase)
_visualize(image, pred_bbox=bbox, phrase=phrase, save_path='imgs/demo_out.jpg', color=(1, 174, 245), draw_phrase=True)

Input:

Output:


Acknowledgements

This repo is organized as CornerNet-Lite and the code is partially from FAOA (e.g. data preparation) and MAttNet (e.g. LSTM). We thank for their great works.


Citations:

If you use any part of this repo in your research, please cite our paper:

@InProceedings{huang2021look,
      title={Look Before You Leap: Learning Landmark Features for One-Stage Visual Grounding}, 
      author={Huang, Binbin and Lian, Dongze and Luo, Weixin and Gao, Shenghua},
      booktitle={IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
      month = {June},
      year={2021},
}
Owner
SVIP Lab
ShanghaiTech Vision and Intelligent Perception Lab
SVIP Lab
Code for "Modeling Indirect Illumination for Inverse Rendering", CVPR 2022

Modeling Indirect Illumination for Inverse Rendering Project Page | Paper | Data Preparation Set up the python environment conda create -n invrender p

ZJU3DV 116 Jan 03, 2023
NER for Indian languages

CL-NERIL: A Cross-Lingual Model for NER in Indian Languages Code for the paper - https://arxiv.org/abs/2111.11815 Setup Setup a virtual environment Th

Akshara P 0 Nov 24, 2021
A command line simple note taking app

Why yet another note taking program? note was designed with a very specific target in mind: me, and my 2354 scraps of paper. It runs from the command

64 Nov 20, 2022
Generating retro pixel game characters with Generative Adversarial Networks. Dataset "TinyHero" included.

pixel_character_generator Generating retro pixel game characters with Generative Adversarial Networks. Dataset "TinyHero" included. Dataset TinyHero D

Agnieszka Mikołajczyk 88 Nov 17, 2022
Reinforcement learning framework and algorithms implemented in PyTorch.

Reinforcement learning framework and algorithms implemented in PyTorch.

Robotic AI & Learning Lab Berkeley 2.1k Jan 04, 2023
Learning RAW-to-sRGB Mappings with Inaccurately Aligned Supervision (ICCV 2021)

Learning RAW-to-sRGB Mappings with Inaccurately Aligned Supervision (ICCV 2021) PyTorch implementation of Learning RAW-to-sRGB Mappings with Inaccurat

Zhilu Zhang 53 Dec 20, 2022
Official Implementation of DE-CondDETR and DELA-CondDETR in "Towards Data-Efficient Detection Transformers"

DE-DETRs By Wen Wang, Jing Zhang, Yang Cao, Yongliang Shen, and Dacheng Tao This repository is an official implementation of DE-CondDETR and DELA-Cond

Wen Wang 41 Dec 12, 2022
ConformalLayers: A non-linear sequential neural network with associative layers

ConformalLayers: A non-linear sequential neural network with associative layers ConformalLayers is a conformal embedding of sequential layers of Convo

Prograf-UFF 5 Sep 28, 2022
LieTransformer: Equivariant Self-Attention for Lie Groups

LieTransformer This repository contains the implementation of the LieTransformer used for experiments in the paper LieTransformer: Equivariant Self-At

OxCSML (Oxford Computational Statistics and Machine Learning) 50 Dec 28, 2022
Official Pytorch implementation of "CLIPstyler:Image Style Transfer with a Single Text Condition"

CLIPstyler Official Pytorch implementation of "CLIPstyler:Image Style Transfer with a Single Text Condition" Environment Pytorch 1.7.1, Python 3.6 $ c

203 Dec 30, 2022
Get started with Machine Learning with Python - An introduction with Python programming examples

Machine Learning With Python Get started with Machine Learning with Python An engaging introduction to Machine Learning with Python TL;DR Download all

Learn Python with Rune 130 Jan 02, 2023
The code for paper "Contrastive Spatio-Temporal Pretext Learning for Self-supervised Video Representation" which is accepted by AAAI 2022

Contrastive Spatio Temporal Pretext Learning for Self-supervised Video Representation (AAAI 2022) The code for paper "Contrastive Spatio-Temporal Pret

8 Jun 30, 2022
The Curious Layperson: Fine-Grained Image Recognition without Expert Labels (BMVC 2021)

The Curious Layperson: Fine-Grained Image Recognition without Expert Labels Subhabrata Choudhury, Iro Laina, Christian Rupprecht, Andrea Vedaldi Code

Subhabrata Choudhury 18 Dec 27, 2022
Thermal Control of Laser Powder Bed Fusion using Deep Reinforcement Learning

This repository is the implementation of the paper "Thermal Control of Laser Powder Bed Fusion Using Deep Reinforcement Learning", linked here. The project makes use of the Deep Reinforcement Library

BaratiLab 11 Dec 27, 2022
This repository contains demos I made with the Transformers library by HuggingFace.

Transformers-Tutorials Hi there! This repository contains demos I made with the Transformers library by 🤗 HuggingFace. Currently, all of them are imp

3.5k Jan 01, 2023
Unofficial & improved implementation of NeRF--: Neural Radiance Fields Without Known Camera Parameters

[Unofficial code-base] NeRF--: Neural Radiance Fields Without Known Camera Parameters [ Project | Paper | Official code base ] ⬅️ Thanks the original

Jianfei Guo 239 Dec 22, 2022
This is the code of NeurIPS'21 paper "Towards Enabling Meta-Learning from Target Models".

ST This is the code of NeurIPS 2021 paper "Towards Enabling Meta-Learning from Target Models". If you use any content of this repo for your work, plea

Su Lu 7 Dec 06, 2022
Computer Vision Script to recognize first person motion, developed as final project for the course "Machine Learning and Deep Learning"

Overview of The Code BaseColab/MLDL_FPAR.pdf: it contains the full explanation of our work Base Colab: it contains the base colab used to perform all

Simone Papicchio 4 Jul 16, 2022
ManipulaTHOR, a framework that facilitates visual manipulation of objects using a robotic arm

ManipulaTHOR: A Framework for Visual Object Manipulation Kiana Ehsani, Winson Han, Alvaro Herrasti, Eli VanderBilt, Luca Weihs, Eric Kolve, Aniruddha

AI2 65 Dec 30, 2022
Robust fine-tuning of zero-shot models

Robust fine-tuning of zero-shot models This repository contains code for the paper Robust fine-tuning of zero-shot models by Mitchell Wortsman*, Gabri

224 Dec 29, 2022