Source code of our work: "Benchmarking Deep Models for Salient Object Detection"

Related tags

Deep LearningSALOD
Overview

SALOD

Source code of our work: "Benchmarking Deep Models for Salient Object Detection".
In this works, we propose a new benchmark for SALient Object Detection (SALOD) methods.

We re-implement 14 methods using same settings, including input size, data loader and evaluation metrics (thanks to Metrics). Hyperparameters of optimizer are different because of various network structures and objective functions. We try our best to tune the optimizer for these models to achieve the best performance one-by-one. Some other networks are debugging now, it is welcome for your contributions on these networks to obtain better performance.

Properties

  1. A unify interface for new models. To develop a new network, you only need to 1) set configs; 2) define network; 3) define loss function. See methods/template.
  2. We build a new dataset by collecting several prevalent datasets in SOD task.
  3. Easy to adopt different backbones (Available backbones: ResNet-50, VGG-16, MobileNet-v2, EfficientNet-B0, GhostNet, Res2Net)
  4. Testing all networks on your own device. By input the name of network, you can test all available methods in our benchmark. Comparisons includes FPS, GFLOPs, model size and multiple effectiveness metrics.
  5. We implement a loss factory that you can change the loss functions using command line parameters.

Available Methods:

Methods Publish. Input Weight Optim. LR Epoch Paper Src Code
DHSNet CVPR2016 320^2 95M Adam 2e-5 30 openaccess Pytorch
NLDF CVPR2017 320^2 161M Adam 1e-5 30 openaccess Pytorch/TF
Amulet ICCV2017 320^2 312M Adam 1e-5 30 openaccess Pytorch
SRM ICCV2017 320^2 240M Adam 5e-5 30 openaccess Pytorch
PicaNet CVPR2018 320^2 464M SGD 1e-2 30 openaccess Pytorch
DSS TPAMI2019 320^2 525M Adam 2e-5 30 IEEE/ArXiv Pytorch
BASNet CVPR2019 320^2 374M Adam 1e-5 30 openaccess Pytorch
CPD CVPR2019 320^2 188M Adam 1e-5 30 openaccess Pytorch
PoolNet CVPR2019 320^2 267M Adam 5e-5 30 openaccess Pytorch
EGNet ICCV2019 320^2 437M Adam 5e-5 30 openaccess Pytorch
SCRN ICCV2019 320^2 100M SGD 1e-2 30 openaccess Pytorch
GCPA AAAI2020 320^2 263M SGD 1e-2 30 aaai.org Pytorch
ITSD CVPR2020 320^2 101M SGD 5e-3 30 openaccess Pytorch
MINet CVPR2020 320^2 635M SGD 1e-3 30 openaccess Pytorch
Tuning ----- ----- ------ ------ ----- ----- ----- -----
*PAGE CVPR2019 320^2 ------ ------ ----- ----- openaccess TF
*PFA CVPR2019 320^2 ------ ------ ----- ----- openaccess Pytorch
*F3Net AAAI2020 320^2 ------ ------ ----- ----- aaai.org Pytorch
*PFPN AAAI2020 320^2 ------ ------ ----- ----- aaai.org Pytorch
*LDF CVPR2020 320^2 ------ ------ ----- ----- openaccess Pytorch

Usage

# model_name: lower-cased method name. E.g. poolnet, egnet, gcpa, dhsnet or minet.
python3 train.py model_name --gpus=0

python3 test.py model_name --gpus=0 --weight=path_to_weight 

python3 test_fps.py model_name --gpus=0

# To evaluate generated maps:
python3 eval.py --pre_path=path_to_maps

Results

We report benchmark results here.
More results please refer to Reproduction, Few-shot and Generalization.

Notice: please contact us if you get better results.

VGG16-based:

Methods #Param. GFLOPs Tr. Time FPS max-F ave-F Fbw MAE SM EM Weight
DHSNet 15.4 52.5 7.5 69.8 .884 .815 .812 .049 .880 .893
Amulet 33.2 1362 12.5 35.1 .855 .790 .772 .061 .854 .876
NLDF 24.6 136 9.7 46.3 .886 .824 .828 .045 .881 .898
SRM 37.9 73.1 7.9 63.1 .857 .779 .769 .060 .859 .874
PicaNet 26.3 74.2 40.5* 8.8 .889 .819 .823 .046 .884 .899
DSS 62.2 99.4 11.3 30.3 .891 .827 .826 .046 .888 .899
BASNet 80.5 114.3 16.9 32.6 .906 .853 .869 .036 .899 .915
CPD 29.2 85.9 10.5 36.3 .886 .815 .792 .052 .885 .888
PoolNet 52.5 236.2 26.4 23.1 .902 .850 .852 .039 .898 .913
EGNet 101 178.8 19.2 16.3 .909 .853 .859 .037 .904 .914
SCRN 16.3 47.2 9.3 24.8 .896 .820 .822 .046 .891 .894
GCPA 42.8 197.1 17.5 29.3 .903 .836 .845 .041 .898 .907
ITSD 16.9 76.3 15.2* 30.6 .905 .820 .834 .045 .901 .896
MINet 47.8 162 21.8 23.4 .900 .839 .852 .039 .895 .909

ResNet50-based:

Methods #Param. GFLOPs Tr. Time FPS max-F ave-F Fbw MAE SM EM Weight
DHSNet 24.2 13.8 3.9 49.2 .909 .830 .848 .039 .905 .905
Amulet 79.8 1093.8 6.3 35.1 .895 .822 .835 .042 .894 .900
NLDF 41.1 115.1 9.2 30.5 .903 .837 .855 .038 .898 .910
SRM 61.2 20.2 5.5 34.3 .882 .803 .812 .047 .885 .891
PicaNet 106.1 36.9 18.5* 14.8 .904 .823 .843 .041 .902 .902
DSS 134.3 35.3 6.6 27.3 .894 .821 .826 .045 .893 .898
BASNet 95.5 47.2 12.2 32.8 .917 .861 .884 .032 .909 .921
CPD 47.9 14.7 7.7 22.7 .906 .842 .836 .040 .904 .908
PoolNet 68.3 66.9 10.2 33.9 .912 .843 .861 .036 .907 .912
EGNet 111.7 222.8 25.7 10.2 .917 .851 .867 .036 .912 .914
SCRN 25.2 12.5 5.5 19.3 .910 .838 .845 .040 .906 .905
GCPA 67.1 54.3 6.8 37.8 .916 .841 .866 .035 .912 .912
ITSD 25.7 19.6 5.7 29.4 .913 .825 .842 .042 .907 .899
MINet 162.4 87 11.7 23.5 .913 .851 .871 .034 .906 .917

Create New Model

To create a new model, you can copy the template folder and modify it as you want.

cp -r ./methods/template ./methods/new_name

More details please refer to python files in template floder.

Loss Factory

We supply a Loss Factory for an easier way to tune the loss functions. You can set --loss and --lw parameters to use it.

Here are some examples:

loss_dict = {'b': BCE, 's': SSIM, 'i': IOU, 'd': DICE, 'e': Edge, 'c': CTLoss}

python train.py ... --loss=bd
# loss = 1 * bce_loss + 1 * dice_loss

python train.py ... --loss=bs --lw=0.3,0.7
# loss = 0.3 * bce_loss + 0.7 * ssim_loss

python train.py ... --loss=bsid --lw=0.3,0.1,0.5,0.2
# loss = 0.3 * bce_loss + 0.1 * ssim_loss + 0.5 * iou_loss + 0.2 * dice_loss
Pytorch Performace Tuning, WandB, AMP, Multi-GPU, TensorRT, Triton

Plant Pathology 2020 FGVC7 Introduction A deep learning model pipeline for training, experimentaiton and deployment for the Kaggle Competition, Plant

Bharat Giddwani 0 Feb 25, 2022
Software Platform for solving and manipulating multiparametric programs in Python

PPOPT Python Parametric OPtimization Toolbox (PPOPT) is a software platform for solving and manipulating multiparametric programs in Python. This pack

10 Sep 13, 2022
ruptures: change point detection in Python

Welcome to ruptures ruptures is a Python library for off-line change point detection. This package provides methods for the analysis and segmentation

Charles T. 1.1k Jan 03, 2023
Another pytorch implementation of FCN (Fully Convolutional Networks)

FCN-pytorch-easiest Trying to be the easiest FCN pytorch implementation and just in a get and use fashion Here I use a handbag semantic segmentation f

Y. Dong 158 Dec 21, 2022
Semantic Segmentation Suite in TensorFlow

Semantic Segmentation Suite in TensorFlow. Implement, train, and test new Semantic Segmentation models easily!

George Seif 2.5k Jan 06, 2023
Tightness-aware Evaluation Protocol for Scene Text Detection

TIoU-metric Release on 27/03/2019. This repository is built on the ICDAR 2015 evaluation code. If you propose a better metric and require further eval

Yuliang Liu 206 Nov 18, 2022
An automated facial recognition based attendance system (desktop application)

Facial_Recognition_based_Attendance_System An automated facial recognition based attendance system (desktop application) Made using Python, Tkinter an

1 Jun 21, 2022
Diverse Image Generation via Self-Conditioned GANs

Diverse Image Generation via Self-Conditioned GANs Project | Paper Diverse Image Generation via Self-Conditioned GANs Steven Liu, Tongzhou Wang, David

Steven Liu 147 Dec 03, 2022
Efficient Training of Audio Transformers with Patchout

PaSST: Efficient Training of Audio Transformers with Patchout This is the implementation for Efficient Training of Audio Transformers with Patchout Pa

165 Dec 26, 2022
Cross-modal Deep Face Normals with Deactivable Skip Connections

Cross-modal Deep Face Normals with Deactivable Skip Connections Victoria Fernández Abrevaya*, Adnane Boukhayma*, Philip H. S. Torr, Edmond Boyer (*Equ

72 Nov 27, 2022
Python interface for SmartRF Sniffer 2 Firmware

#TI SmartRF Packet Sniffer 2 Python Interface TI Makes available a nice packet sniffer firmware, which interfaces to Wireshark. You can see this proje

Colin O'Flynn 3 May 18, 2021
LSTM built using Keras Python package to predict time series steps and sequences. Includes sin wave and stock market data

LSTM Neural Network for Time Series Prediction LSTM built using the Keras Python package to predict time series steps and sequences. Includes sine wav

Jakob Aungiers 4.1k Jan 02, 2023
Grammar Induction using a Template Tree Approach

Gitta Gitta ("Grammar Induction using a Template Tree Approach") is a method for inducing context-free grammars. It performs particularly well on data

Thomas Winters 36 Nov 15, 2022
Python Library for learning (Structure and Parameter) and inference (Statistical and Causal) in Bayesian Networks.

pgmpy pgmpy is a python library for working with Probabilistic Graphical Models. Documentation and list of algorithms supported is at our official sit

pgmpy 2.2k Jan 03, 2023
Source code for the paper: Variance-Aware Machine Translation Test Sets (NeurIPS 2021 Datasets and Benchmarks Track)

Variance-Aware-MT-Test-Sets Variance-Aware Machine Translation Test Sets License See LICENSE. We follow the data licensing plan as the same as the WMT

NLP2CT Lab, University of Macau 5 Dec 21, 2021
A pure PyTorch batched computation implementation of "CIF: Continuous Integrate-and-Fire for End-to-End Speech Recognition"

A pure PyTorch batched computation implementation of "CIF: Continuous Integrate-and-Fire for End-to-End Speech Recognition"

張致強 14 Dec 02, 2022
(ICCV 2021) PyTorch implementation of Paper "Progressive Correspondence Pruning by Consensus Learning"

CLNet (ICCV 2021) PyTorch implementation of Paper "Progressive Correspondence Pruning by Consensus Learning" [project page] [paper] Citing CLNet If yo

Chen Zhao 22 Aug 26, 2022
Back to Basics: Efficient Network Compression via IMP

Back to Basics: Efficient Network Compression via IMP Authors: Max Zimmer, Christoph Spiegel, Sebastian Pokutta This repository contains the code to r

IOL Lab @ ZIB 1 Nov 19, 2021
This repo implements several applications of the proposed generalized Bures-Wasserstein (GBW) geometry on symmetric positive definite matrices.

GBW This repo implements several applications of the proposed generalized Bures-Wasserstein (GBW) geometry on symmetric positive definite matrices. Ap

Andi Han 0 Oct 22, 2021
PyTorch implementation of ENet

PyTorch-ENet PyTorch (v1.1.0) implementation of ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation, ported from the lua-torc

David Silva 333 Dec 29, 2022