Topic Discovery via Latent Space Clustering of Pretrained Language Model Representations

Overview

TopClus

The source code used for Topic Discovery via Latent Space Clustering of Pretrained Language Model Representations, published in WWW 2022.

Requirements

At least one GPU is required to run the code.

Before running, you need to first install the required packages by typing following commands (Using a virtual environment is recommended):

pip3 install -r requirements.txt

You need to also download the following resources in NLTK:

import nltk
nltk.download('stopwords')
nltk.download('averaged_perceptron_tagger')
nltk.download('universal_tagset')

Overview

TopClus is an unsupervised topic discovery method that jointly models words, documents and topics in a latent spherical space derived from pretrained language model representations.

Running Topic Discovery

The entry script is src/trainer.py and the meanings of the command line arguments will be displayed upon typing

python src/trainer.py -h

The topic discovery results will be written to results_${dataset}.

We provide two example scripts nyt.sh and yelp.sh for running topic discovery on the New York Times and the Yelp Review corpora used in the paper, respectively. You need to first extract the text files from the .tar.gz tarball files under datasets/nyt and datasets/yelp.

You could expect to obtain results like the following (the Topic IDs are random):

On New York Times:
Topic 20: months,weeks,days,decades,years,hours,decade,seconds,moments,minutes
Topic 28: weapons,missiles,missile,nuclear,grenades,explosions,explosives,launcher,bombs,bombing
Topic 30: healthcare,medical,medicine,physicians,patients,health,hospitals,bandages,medication,physician
Topic 41: economic,commercially,economy,business,industrial,industry,market,consumer,trade,commerce
Topic 46: senate,senator,congressional,legislators,legislatures,ministry,legislature,minister,ministerial,parliament
Topic 72: government,administration,governments,administrations,mayor,gubernatorial,mayoral,mayors,public,governor
Topic 77: aircraft,airline,airplane,airlines,voyage,airplanes,aviation,planes,spacecraft,flights
Topic 88: baseman,outfielder,baseball,innings,pitchers,softball,inning,basketball,shortstop,pitcher
On Yelp Review:
Topic 1: steamed,roasted,fried,shredded,seasoned,sliced,frozen,baked,canned,glazed
Topic 15: nice,cozy,elegant,polite,charming,relaxing,enjoyable,pleasant,helpful,luxurious
Topic 16: spicy,fresh,creamy,stale,bland,salty,fluffy,greasy,moist,cold
Topic 17: flavor,texture,flavors,taste,quality,smells,tastes,flavour,scent,ingredients
Topic 20: japanese,german,australian,moroccan,russian,greece,italian,greek,asian,
Topic 40: drinks,beers,beer,wine,beverages,alcohol,beverage,vodka,champagne,wines
Topic 55: horrible,terrible,shitty,awful,dreadful,worst,worse,disgusting,filthy,rotten
Topic 75: strawberry,berry,onion,peppers,tomato,onions,potatoes,vegetable,mustard,garlic

Running Document Clustering

The latent document embeddings will be saved to results_${dataset}/latent_doc_emb.pt which can be used as features to clustering algorithms (e.g., K-Means).

If you have ground truth document labels, you could obtain the document clustering evaluation results by passing the document label file and the saved latent document embedding file to the cluster_eval function in src/utils.py. For example:

from src.utils import TopClusUtils
utils = TopClusUtils()
utils.cluster_eval(label_path="datasets/nyt/label_topic.txt", emb_path="results_nyt/latent_doc_emb.pt")

Running on New Datasets

To execute the code on a new dataset, you need to

  1. Create a directory named your_dataset under datasets.
  2. Prepare a text corpus texts.txt (one document per line) under your_dataset as the target corpus for topic discovery.
  3. Run src/trainer.py with appropriate command line arguments (the default values are usually good start points).

Citations

Please cite the following paper if you find the code helpful for your research.

@inproceedings{meng2022topic,
  title={Topic Discovery via Latent Space Clustering of Pretrained Language Model Representations},
  author={Meng, Yu and Zhang, Yunyi and Huang, Jiaxin and Zhang, Yu and Han, Jiawei},
  booktitle={The Web Conference},
  year={2022},
}
Owner
Yu Meng
Ph.D. student, Text Mining
Yu Meng
OCTIS: Comparing Topic Models is Simple! A python package to optimize and evaluate topic models (accepted at EACL2021 demo track)

OCTIS : Optimizing and Comparing Topic Models is Simple! OCTIS (Optimizing and Comparing Topic models Is Simple) aims at training, analyzing and compa

MIND 478 Jan 01, 2023
A PyTorch implementation of Multi-digit Number Recognition from Street View Imagery using Deep Convolutional Neural Networks

SVHNClassifier-PyTorch A PyTorch implementation of Multi-digit Number Recognition from Street View Imagery using Deep Convolutional Neural Networks If

Potter Hsu 182 Jan 03, 2023
Implementation of experiments in the paper Clockwork Variational Autoencoders (project website) using JAX and Flax

Clockwork VAEs in JAX/Flax Implementation of experiments in the paper Clockwork Variational Autoencoders (project website) using JAX and Flax, ported

Julius Kunze 26 Oct 05, 2022
Implementation of Memory-Efficient Neural Networks with Multi-Level Generation, ICCV 2021

Memory-Efficient Multi-Level In-Situ Generation (MLG) By Jiaqi Gu, Hanqing Zhu, Chenghao Feng, Mingjie Liu, Zixuan Jiang, Ray T. Chen and David Z. Pan

Jiaqi Gu 2 Jan 04, 2022
You Only ๐Ÿ‘€ One Sequence

You Only ๐Ÿ‘€ One Sequence TL;DR: We study the transferability of the vanilla ViT pre-trained on mid-sized ImageNet-1k to the more challenging COCO obje

Hust Visual Learning Team 666 Jan 03, 2023
FCOSR: A Simple Anchor-free Rotated Detector for Aerial Object Detection

FCOSR: A Simple Anchor-free Rotated Detector for Aerial Object Detection FCOSR: A Simple Anchor-free Rotated Detector for Aerial Object Detection arXi

59 Nov 29, 2022
๐Ÿ“ Wrapper library for text generation / language models at char and word level with RNN in TensorFlow

tensorlm Generate Shakespeare poems with 4 lines of code. Installation tensorlm is written in / for Python 3.4+ and TensorFlow 1.1+ pip3 install tenso

Kilian Batzner 63 May 22, 2021
Official Implementation of DAFormer: Improving Network Architectures and Training Strategies for Domain-Adaptive Semantic Segmentation

DAFormer: Improving Network Architectures and Training Strategies for Domain-Adaptive Semantic Segmentation [Arxiv] [Paper] As acquiring pixel-wise an

Lukas Hoyer 305 Dec 29, 2022
A Streamlit component to render ECharts.

Streamlit - ECharts A Streamlit component to display ECharts. Install pip install streamlit-echarts Usage This library provides 2 functions to display

Fanilo Andrianasolo 290 Dec 30, 2022
Negative Sample Matters: A Renaissance of Metric Learning for Temporal Grounding

2D-TAN (Optimized) Introduction This is an optimized re-implementation repository for AAAI'2020 paper: Learning 2D Temporal Localization Networks for

Joya Chen 112 Dec 31, 2022
TensorFlow implementation of "TokenLearner: What Can 8 Learned Tokens Do for Images and Videos?"

TokenLearner: What Can 8 Learned Tokens Do for Images and Videos? Source: Improving Vision Transformer Efficiency and Accuracy by Learning to Tokenize

Aritra Roy Gosthipaty 23 Dec 24, 2022
โš“ Eurybia monitor model drift over time and securize model deployment with data validation

View Demo ยท Documentation ยท Medium article ๐Ÿ” Overview Eurybia is a Python library which aims to help in : Detecting data drift and model drift Valida

MAIF 172 Dec 27, 2022
Online Pseudo Label Generation by Hierarchical Cluster Dynamics for Adaptive Person Re-identification

Online Pseudo Label Generation by Hierarchical Cluster Dynamics for Adaptive Person Re-identification

TANG, shixiang 6 Nov 25, 2022
Reference code for the paper "Cross-Camera Convolutional Color Constancy" (ICCV 2021)

Cross-Camera Convolutional Color Constancy, ICCV 2021 (Oral) Mahmoud Afifi1,2, Jonathan T. Barron2, Chloe LeGendre2, Yun-Ta Tsai2, and Francois Bleibe

Mahmoud Afifi 76 Jan 07, 2023
LEAP: Learning Articulated Occupancy of People

LEAP: Learning Articulated Occupancy of People Paper | Video | Project Page This is the official implementation of the CVPR 2021 submission LEAP: Lear

Neural Bodies 60 Nov 18, 2022
Implementation of temporal pooling methods studied in [ICIP'20] A Comparative Evaluation Of Temporal Pooling Methods For Blind Video Quality Assessment

Implementation of temporal pooling methods studied in [ICIP'20] A Comparative Evaluation Of Temporal Pooling Methods For Blind Video Quality Assessment

Zhengzhong Tu 5 Sep 16, 2022
Contrastive Learning for Many-to-many Multilingual Neural Machine Translation(mCOLT/mRASP2), ACL2021

Contrastive Learning for Many-to-many Multilingual Neural Machine Translation(mCOLT/mRASP2), ACL2021 The code for training mCOLT/mRASP2, a multilingua

104 Jan 01, 2023
LVI-SAM: Tightly-coupled Lidar-Visual-Inertial Odometry via Smoothing and Mapping

LVI-SAM This repository contains code for a lidar-visual-inertial odometry and mapping system, which combines the advantages of LIO-SAM and Vins-Mono

Tixiao Shan 1.1k Dec 27, 2022
Portfolio asset allocation strategies: from Markowitz to RNNs

Portfolio asset allocation strategies: from Markowitz to RNNs Research project to explore different approaches for optimal portfolio allocation starti

Luigi Filippo Chiara 1 Feb 05, 2022
The official implementation of "Rethink Dilated Convolution for Real-time Semantic Segmentation"

RegSeg The official implementation of "Rethink Dilated Convolution for Real-time Semantic Segmentation" Paper: arxiv D block Decoder Setup Install the

Roland 61 Dec 27, 2022