Code for "Learning the Best Pooling Strategy for Visual Semantic Embedding", CVPR 2021

Overview

Learning the Best Pooling Strategy for Visual Semantic Embedding

License: MIT

Official PyTorch implementation of the paper Learning the Best Pooling Strategy for Visual Semantic Embedding (CVPR 2021 Oral).

Please use the following bib entry to cite this paper if you are using any resources from the repo.

@inproceedings{chen2021vseinfty,
     title={Learning the Best Pooling Strategy for Visual Semantic Embedding},
     author={Chen, Jiacheng and Hu, Hexiang and Wu, Hao and Jiang, Yuning and Wang, Changhu},
     booktitle={IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
     year={2021}
} 

We referred to the implementations of VSE++ and SCAN to build up our codebase.

Introduction

Illustration of the standard Visual Semantic Embedding (VSE) framework with the proposed pooling-based aggregator, i.e., Generalized Pooling Operator (GPO). It is simple and effective, which automatically adapts to the appropriate pooling strategy given different data modality and feature extractor, and improves VSE models at negligible extra computation cost.

Image-text Matching Results

The following tables show partial results of image-to-text retrieval on COCO and Flickr30K datasets. In these experiments, we use BERT-base as the text encoder for our methods. This branch provides our code and pre-trained models for using BERT as the text backbone, please check out to the bigru branch for the code and pre-trained models for using BiGRU as the text backbone.

Note that the VSE++ entries in the following tables are the VSE++ model with the specified feature backbones, thus the results are different from the original VSE++ paper.

Results of 5-fold evaluation on COCO 1K Test Split

Visual Backbone Text Backbone R1 R5 R1 R5 Link
VSE++ BUTD region BERT-base 67.9 91.9 54.0 85.6 -
VSEInfty BUTD region BERT-base 79.7 96.4 64.8 91.4 Here
VSEInfty BUTD grid BERT-base 80.4 96.8 66.4 92.1 Here
VSEInfty WSL grid BERT-base 84.5 98.1 72.0 93.9 Here

Results on Flickr30K Test Split

Visual Backbone Text Backbone R1 R5 R1 R5 Link
VSE++ BUTD region BERT-base 63.4 87.2 45.6 76.4 -
VSEInfty BUTD region BERT-base 81.7 95.4 61.4 85.9 Here
VSEInfty BUTD grid BERT-base 81.5 97.1 63.7 88.3 Here
VSEInfty WSL grid BERT-base 88.4 98.3 74.2 93.7 Here

Result (in [email protected]) on Crisscrossed Caption benchmark (trained on COCO)

Visual Backbone Text Backbone I2T T2I T2T I2I
VSRN BUTD region BiGRU 52.4 40.1 41.0 44.2
DE EfficientNet-B4 grid BERT-base 55.9 41.7 42.6 38.5
VSEInfty BUTD grid BERT-base 60.6 46.2 45.9 44.4
VSEInfty WSL grid BERT-base 67.9 53.6 46.7 51.3

Preparation

Environment

We trained and evaluated our models with the following key dependencies:

  • Python 3.7.3

  • Pytorch 1.2.0

  • Transformers 2.1.0

Run pip install -r requirements.txt to install the exactly same dependencies as our experiments. However, we also verified that using the latest Pytorch 1.8.0 and Transformers 4.4.2 can also produce similar results.

Data

We organize all data used in the experiments in the following manner:

data
├── coco
│   ├── precomp  # pre-computed BUTD region features for COCO, provided by SCAN
│   │      ├── train_ids.txt
│   │      ├── train_caps.txt
│   │      ├── ......
│   │
│   ├── images   # raw coco images
│   │      ├── train2014
│   │      └── val2014
│   │
│   ├── cxc_annots # annotations for evaluating COCO-trained models on the CxC benchmark
│   │
│   └── id_mapping.json  # mapping from coco-id to image's file name
│   
│
├── f30k
│   ├── precomp  # pre-computed BUTD region features for Flickr30K, provided by SCAN
│   │      ├── train_ids.txt
│   │      ├── train_caps.txt
│   │      ├── ......
│   │
│   ├── flickr30k-images   # raw coco images
│   │      ├── xxx.jpg
│   │      └── ...
│   └── id_mapping.json  # mapping from f30k index to image's file name
│   
├── weights
│      └── original_updown_backbone.pth # the BUTD CNN weights
│
└── vocab  # vocab files provided by SCAN (only used when the text backbone is BiGRU)

The download links for original COCO/F30K images, precomputed BUTD features, and corresponding vocabularies are from the offical repo of SCAN. The precomp folders contain pre-computed BUTD region features, data/coco/images contains raw MS-COCO images, and data/f30k/flickr30k-images contains raw Flickr30K images.

The id_mapping.json files are the mapping from image index (ie, the COCO id for COCO images) to corresponding filenames, we generated these mappings to eliminate the need of the pycocotools package.

weights/original_updowmn_backbone.pth is the pre-trained ResNet-101 weights from Bottom-up Attention Model, we converted the original Caffe weights into Pytorch. Please download it from this link.

The data/coco/cxc_annots directory contains the necessary data files for running the Criscrossed Caption (CxC) evaluation. Since there is no official evaluation protocol in the CxC repo, we processed their raw data files and generated these data files to implement our own evaluation. We have verified our implementation by aligning the evaluation results of the official VSRN model with the ones reported by the CxC paper Please download the data files at this link.

Please download all necessary data files and organize them in the above manner, the path to the data directory will be the argument to the training script as shown below.

Training

Assuming the data root is /tmp/data, we provide example training scripts for:

  1. Grid feature with BUTD CNN for the image feature, BERT-base for the text feature. See train_grid.sh

  2. BUTD Region feature for the image feature, BERT-base for the text feature. See train_region.sh

To use other CNN initializations for the grid image feature, change the --backbone_source argument to different values:

  • (1). the default detector is to use the BUTD ResNet-101, we have adapted the original Caffe weights into Pytorch and provided the download link above;
  • (2). wsl is to use the backbones from large-scale weakly supervised learning;
  • (3). imagenet_res152 is to use the ResNet-152 pre-trained on ImageNet.

Evaluation

Run eval.py to evaluate specified models on either COCO and Flickr30K. For evaluting pre-trained models on COCO, use the following command (assuming there are 4 GPUs, and the local data path is /tmp/data):

CUDA_VISIBLE_DEVICES=0,1,2,3 python3 eval.py --dataset coco --data_path /tmp/data/coco

For evaluting pre-trained models on Flickr-30K, use the command:

CUDA_VISIBLE_DEVICES=0,1,2,3 python3 eval.py --dataset f30k --data_path /tmp/data/f30k

For evaluating pre-trained COCO models on the CxC dataset, use the command:

CUDA_VISIBLE_DEVICES=0,1,2,3 python3 eval.py --dataset coco --data_path /tmp/data/coco --evaluate_cxc

For evaluating two-model ensemble, first run single-model evaluation commands above with the argument --save_results, and then use eval_ensemble.py to get the results (need to manually specify the paths to the saved results).

Owner
Jiacheng Chen
Jiacheng Chen
Intel® Neural Compressor is an open-source Python library running on Intel CPUs and GPUs

Intel® Neural Compressor targeting to provide unified APIs for network compression technologies, such as low precision quantization, sparsity, pruning, knowledge distillation, across different deep l

Intel Corporation 846 Jan 04, 2023
Code for CVPR2019 paper《Unequal Training for Deep Face Recognition with Long Tailed Noisy Data》

Unequal-Training-for-Deep-Face-Recognition-with-Long-Tailed-Noisy-Data. This is the code of CVPR 2019 paper《Unequal Training for Deep Face Recognition

Zhong Yaoyao 68 Jan 07, 2023
Amazing-Python-Scripts - 🚀 Curated collection of Amazing Python scripts from Basics to Advance with automation task scripts.

📑 Introduction A curated collection of Amazing Python scripts from Basics to Advance with automation task scripts. This is your Personal space to fin

Avinash Ranjan 1.1k Dec 29, 2022
[ECCV 2020] XingGAN for Person Image Generation

Contents XingGAN or CrossingGAN Installation Dataset Preparation Generating Images Using Pretrained Model Train and Test New Models Evaluation Acknowl

Hao Tang 218 Oct 29, 2022
This is code of book "Learn Deep Learning with PyTorch"

深度学习入门之PyTorch Learn Deep Learning with PyTorch 非常感谢您能够购买此书,这个github repository包含有深度学习入门之PyTorch的实例代码。由于本人水平有限,在写此书的时候参考了一些网上的资料,在这里对他们表示敬意。由于深度学习的技术在

Xingyu Liao 2.5k Jan 04, 2023
minimizer-space de Bruijn graphs (mdBG) for whole genome assembly

rust-mdbg: Minimizer-space de Bruijn graphs (mdBG) for whole-genome assembly rust-mdbg is an ultra-fast minimizer-space de Bruijn graph (mdBG) impleme

Barış Ekim 148 Dec 01, 2022
MVS2D: Efficient Multi-view Stereo via Attention-Driven 2D Convolutions

MVS2D: Efficient Multi-view Stereo via Attention-Driven 2D Convolutions Project Page | Paper If you find our work useful for your research, please con

96 Jan 04, 2023
Code for CVPR2019 Towards Natural and Accurate Future Motion Prediction of Humans and Animals

Motion prediction with Hierarchical Motion Recurrent Network Introduction This work concerns motion prediction of articulate objects such as human, fi

Shuang Wu 85 Dec 11, 2022
Solutions of Reinforcement Learning 2nd Edition

Solutions of Reinforcement Learning, An Introduction

YIFAN WANG 1.4k Dec 30, 2022
Official Implementation of DE-DETR and DELA-DETR in "Towards Data-Efficient Detection Transformers"

DE-DETRs By Wen Wang, Jing Zhang, Yang Cao, Yongliang Shen, and Dacheng Tao This repository is an official implementation of DE-DETR and DELA-DETR in

Wen Wang 61 Dec 12, 2022
Set of methods to ensemble boxes from different object detection models, including implementation of "Weighted boxes fusion (WBF)" method.

Set of methods to ensemble boxes from different object detection models, including implementation of "Weighted boxes fusion (WBF)" method.

1.4k Jan 05, 2023
Official Implementation of SWAGAN: A Style-based Wavelet-driven Generative Model

Official Implementation of SWAGAN: A Style-based Wavelet-driven Generative Model SWAGAN: A Style-based Wavelet-driven Generative Model Rinon Gal, Dana

55 Dec 06, 2022
code for EMNLP 2019 paper Text Summarization with Pretrained Encoders

PreSumm This code is for EMNLP 2019 paper Text Summarization with Pretrained Encoders Updates Jan 22 2020: Now you can Summarize Raw Text Input!. Swit

Yang Liu 1.2k Dec 28, 2022
Benchmark VAE - Library for Variational Autoencoder benchmarking

Documentation pythae This library implements some of the most common (Variational) Autoencoder models. In particular it provides the possibility to pe

1.1k Jan 02, 2023
Human motion synthesis using Unity3D

Human motion synthesis using Unity3D Prerequisite: Software: amc2bvh.exe, Unity 2017, Blender. Unity: RockVR (Video Capture), scenes, character models

Hao Xu 9 Jun 01, 2022
The implementation of FOLD-R++ algorithm

FOLD-R-PP The implementation of FOLD-R++ algorithm. The target of FOLD-R++ algorithm is to learn an answer set program for a classification task. Inst

13 Dec 23, 2022
Multi-Agent Reinforcement Learning for Active Voltage Control on Power Distribution Networks (MAPDN)

Multi-Agent Reinforcement Learning for Active Voltage Control on Power Distribution Networks (MAPDN) This is the implementation of the paper Multi-Age

Future Power Networks 83 Jan 06, 2023
Lolviz - A simple Python data-structure visualization tool for lists of lists, lists, dictionaries; primarily for use in Jupyter notebooks / presentations

lolviz By Terence Parr. See Explained.ai for more stuff. A very nice looking javascript lolviz port with improvements by Adnan M.Sagar. A simple Pytho

Terence Parr 785 Dec 30, 2022
On Uncertainty, Tempering, and Data Augmentation in Bayesian Classification

Understanding Bayesian Classification This repository hosts the code to reproduce the results presented in the paper On Uncertainty, Tempering, and Da

Sanyam Kapoor 18 Nov 17, 2022
We envision models that are pre-trained on a vast range of domain-relevant tasks to become key for molecule property prediction

We envision models that are pre-trained on a vast range of domain-relevant tasks to become key for molecule property prediction. This repository aims to give easy access to state-of-the-art pre-train

GMUM 90 Jan 08, 2023