Oriented Object Detection: Oriented RepPoints + Swin Transformer/ReResNet

Overview

Oriented RepPoints for Aerial Object Detection

图片

The code for the implementation of “Oriented RepPoints + Swin Transformer/ReResNet”.

Introduction

Based on the Oriented Reppoints detector with Swin Transformer backbone, the 3rd Place is achieved on the Task 1 and the 2nd Place is achieved on the Task 2 of 2021 challenge of Learning to Understand Aerial Images (LUAI) held on ICCV’2021. The detailed information is introduced in this paper of "LUAI Challenge 2021 on Learning to Understand Aerial Images, ICCVW2021".

New Feature

  • BackBone: add Swin-Transformer, ReResNet
  • DataAug: add Mosaic4or9, Mixup, HSV, RandomPerspective, RandomScaleCrop DataAug out

Installation

Please refer to install.md for installation and dataset preparation.

Getting Started

This repo is based on mmdetection. Please see GetStart.md for the basic usage.

Results and Models

The results on DOTA test-dev set are shown in the table below(password:aabb/swin/ABCD). More detailed results please see the paper.

Model Backbone MS DataAug DOTAv1 mAP DOTAv2 mAP Download
OrientedReppoints R-50 - - 75.68 - baidu(aabb)
OrientedReppoints R-101 - 76.21 - baidu(aabb)
OrientedReppoints R-101 78.12 - baidu(aabb)
OrientedReppoints SwinT-tiny - - - -

ImageNet-1K and ImageNet-22K Pretrained Models

name pretrain resolution [email protected] [email protected] #params FLOPs FPS 22K model 1K model Need to turn read version
Swin-T ImageNet-1K 224x224 81.2 95.5 28M 4.5G 755 - github/baidu(swin)/config
Swin-S ImageNet-1K 224x224 83.2 96.2 50M 8.7G 437 - github/baidu(swin)/config
Swin-B ImageNet-1K 224x224 83.5 96.5 88M 15.4G 278 - github/baidu(swin)/config
Swin-B ImageNet-1K 384x384 84.5 97.0 88M 47.1G 85 - github/baidu(swin)/test-config
Swin-B ImageNet-22K 224x224 85.2 97.5 88M 15.4G 278 github/baidu(swin) github/baidu(swin)/test-config
Swin-B ImageNet-22K 384x384 86.4 98.0 88M 47.1G 85 github/baidu(swin) github/baidu(swin)/test-config
Swin-L ImageNet-22K 224x224 86.3 97.9 197M 34.5G 141 github/baidu(swin) github/baidu(swin)/test-config
Swin-L ImageNet-22K 384x384 87.3 98.2 197M 103.9G 42 github/baidu(swin) github/baidu(swin)/test-config
ReResNet50 ImageNet-1K 224x224 71.20 90.28 - - - - google/baidu(ABCD)/log -

The mAOE results on DOTAv1 val set are shown in the table below(password:aabb).

Model Backbone mAOE Download
OrientedReppoints R-50 5.93° baidu(aabb)

Note:

  • Wtihout the ground-truth of test subset, the mAOE of orientation evaluation is calculated on the val subset(original train subset for training).
  • The orientation (angle) of an aerial object is define as below, the detail of mAOE, please see the paper. The code of mAOE is mAOE_evaluation.py. 微信截图_20210522135042

Visual results

The visual results of learning points and the oriented bounding boxes. The visualization code is show_learning_points_and_boxes.py.

  • Learning points

Learning Points

  • Oriented bounding box

Oriented Box

Citation

@article{Li2021oriented,
  title={Oriented RepPoints for Aerial Object Detection},
  author={Wentong Li and Jianke Zhu},
  journal={arXiv preprint arXiv:2105.11111},
  year={2021}
}

Acknowledgements

I have used utility functions from other wonderful open-source projects. Espeicially thank the authors of:

OrientedRepPoints

Swin-Transformer-Object-Detection

ReDet

Keepsake is a Python library that uploads files and metadata (like hyperparameters) to Amazon S3 or Google Cloud Storage

Keepsake Version control for machine learning. Keepsake is a Python library that uploads files and metadata (like hyperparameters) to Amazon S3 or Goo

Replicate 1.6k Dec 29, 2022
Does Oversizing Improve Prosumer Profitability in a Flexibility Market? - A Sensitivity Analysis using PV-battery System

Does Oversizing Improve Prosumer Profitability in a Flexibility Market? - A Sensitivity Analysis using PV-battery System The possibilities to involve

Babu Kumaran Nalini 0 Nov 19, 2021
Prometheus Exporter for data scraped from datenplattform.darmstadt.de

darmstadt-opendata-exporter Scrapes data from https://datenplattform.darmstadt.de and presents it in the Prometheus Exposition format. Pull requests w

Martin Weinelt 2 Apr 12, 2022
Deep deconfounded recommender (Deep-Deconf) for paper "Deep causal reasoning for recommendations"

Deep Causal Reasoning for Recommender Systems The codes are associated with the following paper: Deep Causal Reasoning for Recommendations, Yaochen Zh

Yaochen Zhu 22 Oct 15, 2022
CoCosNet v2: Full-Resolution Correspondence Learning for Image Translation

CoCosNet v2: Full-Resolution Correspondence Learning for Image Translation (CVPR 2021, oral presentation) CoCosNet v2: Full-Resolution Correspondence

Microsoft 308 Dec 07, 2022
Novel and high-performance medical image classification pipelines are heavily utilizing ensemble learning strategies

An Analysis on Ensemble Learning optimized Medical Image Classification with Deep Convolutional Neural Networks Novel and high-performance medical ima

14 Dec 18, 2022
An implementation of the WHATWG URL Standard in JavaScript

whatwg-url whatwg-url is a full implementation of the WHATWG URL Standard. It can be used standalone, but it also exposes a lot of the internal algori

314 Dec 28, 2022
Official PyTorch Implementation of Learning Architectures for Binary Networks

Learning Architectures for Binary Networks An Pytorch Implementation of the paper Learning Architectures for Binary Networks (BNAS) (ECCV 2020) If you

Computer Vision Lab. @ GIST 25 Jun 09, 2022
PyTorch code for the paper "FIERY: Future Instance Segmentation in Bird's-Eye view from Surround Monocular Cameras"

FIERY This is the PyTorch implementation for inference and training of the future prediction bird's-eye view network as described in: FIERY: Future In

Wayve 406 Dec 24, 2022
Codebase for testing whether hidden states of neural networks encode discrete structures.

structural-probes Codebase for testing whether hidden states of neural networks encode discrete structures. Based on the paper A Structural Probe for

John Hewitt 349 Dec 17, 2022
A Pytorch implementation of the multi agent deep deterministic policy gradients (MADDPG) algorithm

Multi-Agent-Deep-Deterministic-Policy-Gradients A Pytorch implementation of the multi agent deep deterministic policy gradients(MADDPG) algorithm This

Phil Tabor 159 Dec 28, 2022
This project aims to explore the deployment of Swin-Transformer based on TensorRT, including the test results of FP16 and INT8.

Swin Transformer This project aims to explore the deployment of SwinTransformer based on TensorRT, including the test results of FP16 and INT8. Introd

maggiez 87 Dec 21, 2022
POT : Python Optimal Transport

POT: Python Optimal Transport This open source Python library provide several solvers for optimization problems related to Optimal Transport for signa

Python Optimal Transport 1.7k Dec 31, 2022
Pytorch implementation of the AAAI 2022 paper "Cross-Domain Empirical Risk Minimization for Unbiased Long-tailed Classification"

[AAAI22] Cross-Domain Empirical Risk Minimization for Unbiased Long-tailed Classification We point out the overlooked unbiasedness in long-tailed clas

PatatiPatata 28 Oct 18, 2022
A Fast and Accurate One-Stage Approach to Visual Grounding, ICCV 2019 (Oral)

One-Stage Visual Grounding ***** New: Our recent work on One-stage VG is available at ReSC.***** A Fast and Accurate One-Stage Approach to Visual Grou

Zhengyuan Yang 118 Dec 05, 2022
Rayvens makes it possible for data scientists to access hundreds of data services within Ray with little effort.

Rayvens augments Ray with events. With Rayvens, Ray applications can subscribe to event streams, process and produce events. Rayvens leverages Apache

CodeFlare 32 Dec 25, 2022
Instance Segmentation in 3D Scenes using Semantic Superpoint Tree Networks

SSTNet Instance Segmentation in 3D Scenes using Semantic Superpoint Tree Networks(ICCV2021) by Zhihao Liang, Zhihao Li, Songcen Xu, Mingkui Tan, Kui J

83 Nov 29, 2022
Source code for our paper "Learning to Break Deep Perceptual Hashing: The Use Case NeuralHash"

Learning to Break Deep Perceptual Hashing: The Use Case NeuralHash Abstract: Apple recently revealed its deep perceptual hashing system NeuralHash to

<a href=[email protected]"> 11 Dec 03, 2022
MMdnn is a set of tools to help users inter-operate among different deep learning frameworks. E.g. model conversion and visualization. Convert models between Caffe, Keras, MXNet, Tensorflow, CNTK, PyTorch Onnx and CoreML.

MMdnn MMdnn is a comprehensive and cross-framework tool to convert, visualize and diagnose deep learning (DL) models. The "MM" stands for model manage

Microsoft 5.7k Jan 09, 2023
Official implementation for the paper "Attentive Prototypes for Source-free Unsupervised Domain Adaptive 3D Object Detection"

Attentive Prototypes for Source-free Unsupervised Domain Adaptive 3D Object Detection PyTorch code release of the paper "Attentive Prototypes for Sour

Deepti Hegde 23 Oct 17, 2022