Official Pytorch Implementation of Relational Self-Attention: What's Missing in Attention for Video Understanding

Related tags

Deep LearningRSA
Overview

Relational Self-Attention: What's Missing in Attention for Video Understanding

This repository is the official implementation of "Relational Self-Attention: What's Missing in Attention for Video Understanding" by Manjin Kim*, Heeseung Kwon*, Chunyu Wang, Suha Kwak, and Minsu Cho (*equal contribution).

RSA

Requirements

  • Python: 3.7.9
  • Pytorch: 1.6.0
  • TorchVision: 0.2.1
  • Cuda: 10.1
  • Conda environment environment.yml

To install requirements:

    conda env create -f environment.yml
    conda activate rsa

Dataset Preparation

  1. Download Something-Something v1 & v2 (SSv1 & SSv2) datasets and extract RGB frames. Download URLs: SSv1, SSv2
  2. Make txt files that define training & validation splits. Each line in txt files is formatted as [video_path] [#frames] [class_label]. Please refer to any txt files in ./data directory.

Training

To train RSANet-R50 on SSv1 or SSv2 datasets in the paper, run this command:

    # For SSv1
    ./scripts/train_Something_v1.sh 
    
    
     
    # example: ./scripts/train_Something_v1.sh RSA_R50_SSV1_16frames 16
    
    # For SSv2
    ./scripts/train_Something_v2.sh 
      
      
       
    # example: ./scripts/train_Something_v2.sh RSA_R50_SSV2_16frames 16

      
     
    
   

Evaluation

To evaluate RSANet-R50 on SSv2 dataset in the paper, run:

    # For SSv1
    ./scripts/test_Something_v1.sh 
    
     
     
      
    # example: ./scripts/test_Something_v1.sh RSA_R50_SSV1_16frames resnet_rgb_model_best.pth.tar 16
    
    # For SSv2
    ./scripts/test_Something_v2.sh 
       
        
        
          # example: ./scripts/test_Something_v2.sh RSA_R50_SSV2_16frames resnet_rgb_model_best.pth.tar 16 
        
       
      
     
    
   

Results

Our model achieves the following performance on Something-Something-V1 and Something-Something-V2:

model dataset frames top-1 / top-5 logs checkpoints
RSANet-R50 SSV1 16 54.0 % / 81.1 % [log] [checkpoint]
RSANet-R50 SSV2 16 66.0 % / 89.9 % [log] [checkpoint]

Qualitative Results

kernel_visualization

Owner
mandos
PH.D. student
mandos
Changing the Mind of Transformers for Topically-Controllable Language Generation

We will first introduce the how to run the IPython notebook demo by downloading our pretrained models. Then, we will introduce how to run our training and evaluation code.

IESL 20 Dec 06, 2022
Multi-Horizon-Forecasting-for-Limit-Order-Books

Multi-Horizon-Forecasting-for-Limit-Order-Books This jupyter notebook is used to demonstrate our work, Multi-Horizon Forecasting for Limit Order Books

Zihao Zhang 116 Dec 23, 2022
DrNAS: Dirichlet Neural Architecture Search

This paper proposes a novel differentiable architecture search method by formulating it into a distribution learning problem. We treat the continuously relaxed architecture mixing weight as random va

Xiangning Chen 37 Jan 03, 2023
Multi Camera Calibration

Multi Camera Calibration 'modules/camera_calibration/app/camera_calibration.cpp' is for calculating extrinsic parameter of each individual cameras. 'm

7 Dec 01, 2022
Neural style in TensorFlow! 🎨

neural-style An implementation of neural style in TensorFlow. This implementation is a lot simpler than a lot of the other ones out there, thanks to T

Anish Athalye 5.5k Dec 29, 2022
For IBM Quantum Challenge Africa 2021, 9 September (07:00 UTC) - 20 September (23:00 UTC).

IBM Quantum Challenge Africa 2021 To ensure Africa is able to apply quantum computing to solve problems relevant to the continent, the IBM Research La

Qiskit Community 48 Dec 25, 2022
This is the code of NeurIPS'21 paper "Towards Enabling Meta-Learning from Target Models".

ST This is the code of NeurIPS 2021 paper "Towards Enabling Meta-Learning from Target Models". If you use any content of this repo for your work, plea

Su Lu 7 Dec 06, 2022
Deep Reinforcement Learning for mobile robot navigation in ROS Gazebo simulator

DRL-robot-navigation Deep Reinforcement Learning for mobile robot navigation in ROS Gazebo simulator. Using Twin Delayed Deep Deterministic Policy Gra

87 Jan 07, 2023
Training PSPNet in Tensorflow. Reproduce the performance from the paper.

Training Reproduce of PSPNet. (Updated 2021/04/09. Authors of PSPNet have provided a Pytorch implementation for PSPNet and their new work with support

Li Xuhong 126 Jul 13, 2022
[CoRL 21'] TANDEM: Tracking and Dense Mapping in Real-time using Deep Multi-view Stereo

TANDEM: Tracking and Dense Mapping in Real-time using Deep Multi-view Stereo Lukas Koestler1*    Nan Yang1,2*,†    Niclas Zeller2,3    Daniel Cremers1

TUM Computer Vision Group 744 Jan 04, 2023
Neural Turing Machine (NTM) & Differentiable Neural Computer (DNC) with pytorch & visdom

Neural Turing Machine (NTM) & Differentiable Neural Computer (DNC) with pytorch & visdom Sample on-line plotting while training(avg loss)/testing(writ

Jingwei Zhang 269 Nov 15, 2022
A torch implementation of "Pixel-Level Domain Transfer"

Pixel Level Domain Transfer A torch implementation of "Pixel-Level Domain Transfer". based on dcgan.torch. Dataset The dataset used is "LookBook", fro

Fei Xia 260 Sep 02, 2022
[ICCV'2021] "SSH: A Self-Supervised Framework for Image Harmonization", Yifan Jiang, He Zhang, Jianming Zhang, Yilin Wang, Zhe Lin, Kalyan Sunkavalli, Simon Chen, Sohrab Amirghodsi, Sarah Kong, Zhangyang Wang

SSH: A Self-Supervised Framework for Image Harmonization (ICCV 2021) code for SSH Representative Examples Main Pipeline RealHM DataSet Google Drive Pr

VITA 86 Dec 02, 2022
Code for the paper "Zero-shot Natural Language Video Localization" (ICCV2021, Oral).

Zero-shot Natural Language Video Localization (ZSNLVL) by Pseudo-Supervised Video Localization (PSVL) This repository is for Zero-shot Natural Languag

Computer Vision Lab. @ GIST 37 Dec 27, 2022
Generative Models as a Data Source for Multiview Representation Learning

GenRep Project Page | Paper Generative Models as a Data Source for Multiview Representation Learning Ali Jahanian, Xavier Puig, Yonglong Tian, Phillip

Ali 81 Dec 03, 2022
Deep Learning applied to Integral data analysis

DeepIntegralCompton Deep Learning applied to Integral data analysis Module installation Move to the root directory of the project and execute : pip in

Thomas Vuillaume 1 Dec 10, 2021
Self-supervised learning on Graph Representation Learning (node-level task)

graph_SSL Self-supervised learning on Graph Representation Learning (node-level task) How to run the code To run GRACE, sh run_GRACE.sh To run GCA, sh

Namkyeong Lee 3 Dec 31, 2021
Official TensorFlow code for the forthcoming paper

~ Efficient-CapsNet ~ Are you tired of over inflated and overused convolutional neural networks? You're right! It's time for CAPSULES :)

Vittorio Mazzia 203 Jan 08, 2023
Object Detection using YOLO from PyImageSearch

Object Detection using YOLO from PyImageSearch By applying object detection, you’ll not only be able to determine what is in an image, but also where

Mohamed NIANG 1 Feb 09, 2022
CAMPARI: Camera-Aware Decomposed Generative Neural Radiance Fields

CAMPARI: Camera-Aware Decomposed Generative Neural Radiance Fields Paper | Supplementary | Video | Poster If you find our code or paper useful, please

26 Nov 29, 2022