Current state of supervised and unsupervised depth completion methods

Overview

Awesome Depth Completion

Table of Contents

About Sparse-to-Dense Depth Completion

In the sparse-to-dense depth completion problem, one wants to infer the dense depth map of a 3-D scene given an RGB image and its corresponding sparse reconstruction in the form of a sparse depth map obtained either from computational methods such as SfM (Strcuture-from-Motion) or active sensors such as lidar or structured light sensors.

Example 1: VOID dataset (indoor VIO)

Input RGB image Sparse point cloud Output point cloud from KBNet

Example 2: KITTI dataset (outdoor lidar)

Input RGB image Output point cloud from ScaffNet

Current State of Depth Completion Methods

Here we compile both unsupervised/self-supervised (monocular and stereo) and supervised methods published in recent conferences and journals on the VOID (Wong et. al., 2020) and KITTI (Uhrig et. al., 2017) depth completion benchmarks. Our ranking considers all four metrics rather than just RMSE.

Quick Links

Unsupervised VOID Depth Completion Benchmark

Paper Publication Code MAE RMSE iMAE iRMSE
Unsupervised Depth Completion with Calibrated Backprojection Layers ICCV 2021 PyTorch 39.80 95.86 21.16 49.72
Learning Topology from Synthetic Data for Unsupervised Depth Completion RA-L & ICRA 2021 Tensorflow 60.68 122.01 35.24 67.34
Unsupervised Depth Completion from Visual Inertial Odometry RA-L & ICRA 2020 Tensorflow 85.05 169.79 48.92 104.02
Dense depth posterior (ddp) from single image and sparse range CVPR 2019 Tensorflow 151.86 222.36 74.59 112.36
Self-supervised Sparse-to-Dense: Self- supervised Depth Completion from LiDAR and Monocular Camera ICRA 2019 PyTorch 178.85 243.84 80.12 107.69

Supervised VOID Depth Completion Benchmark

Paper Publication Code MAE RMSE iMAE iRMSE
Scanline Resolution-Invariant Depth Completion Using a Single Image and Sparse LiDAR Point Cloud RA-L & IROS 2021 N/A 59.40 181.42 19.37 46.56

Unsupervised KITTI Depth Completion Benchmark

Paper Publication Code MAE RMSE iMAE iRMSE
Unsupervised Depth Completion with Calibrated Backprojection Layers ICCV 2021 PyTorch 256.76 1069.47 1.02 2.95
Learning Topology from Synthetic Data for Unsupervised Depth Completion RA-L & ICRA 2021 Tensorflow 280.76 1121.93 1.15 3.30
Project to Adapt: Domain Adaptation for Depth Completion from Noisy and Sparse Sensor Data ACCV 2020 PyTorch 280.42 1095.26 1.19 3.53
Unsupervised Depth Completion from Visual Inertial Odometry RA-L & ICRA 2020 Tensorflow 299.41 1169.97 1.20 3.56
A Surface Geometry Model for LiDAR Depth Completion RA-L & ICRA 2021 Tensorflow 298.3 1239.84 1.21 3.76
Dense depth posterior (ddp) from single image and sparse range CVPR 2019 Tensorflow 343.46 1263.19 1.32 3.58
DFuseNet: Deep Fusion of RGB and Sparse Depth Information for Image Guided Dense Depth Completion ITSC 2019 PyTorch 429.93 1206.66 1.79 3.62
In Defense of Classical Image Processing: Fast Depth Completion on the CPU CRV 2018 Python 302.60 1288.46 1.29 3.78
Self-supervised Sparse-to-Dense: Self- supervised Depth Completion from LiDAR and Monocular Camera ICRA 2019 PyTorch 350.32 1299.85 1.57 4.07
Semantically Guided Depth Upsampling GCPR 2016 N/A 605.47 2312.57 2.05 7.38

Supervised KITTI Depth Completion Benchmark

Paper Publication Code MAE RMSE iMAE iRMSE
Non-Local Spatial Propagation Network for Depth Completion ECCV 2020 PyTorch 199.5 741.68 0.84 1.99
CSPN++: Learning Context and Resource Aware Convolutional Spatial Propagation Networks for Depth Completion AAAI 2020 N/A 209.28 743.69 0.90 2.07
Dense depth posterior (ddp) from single image and sparse range CVPR 2019 Tensorflow 203.96 832.94 0.85 2.10
Adaptive context-aware multi-modal network for depth completion TIP 2021 PyTorch 206.80 732.99 0.90 2.08
PENet: Towards Precise and Efficient Image Guided Depth Completion ICRA 2021 PyTorch 210.55 730.08 0.94 2.17
FCFR-Net: Feature Fusion based Coarse- to-Fine Residual Learning for Depth Completion AAAI 2021 N/A 217.15 735.81 0.98 2.20
Learning Guided Convolutional Network for Depth Completion TIP 2020 PyTorch 218.83 736.24 0.99 2.25
DenseLiDAR: A Real-Time Pseudo Dense Depth Guided Depth Completion Network ICRA 2021 N/A 214.13 755.41 0.96 2.25
A Multi-Scale Guided Cascade Hourglass Network for Depth Completion WACV 2020 PyTorch 220.41 762.19 0.98 2.30
Sparse and noisy LiDAR completion with RGB guidance and uncertainty MVA 2019 PyTorch 215.02 772.87 0.93 2.19
A Multi-Scale Guided Cascade Hourglass Network for Depth Completion WACV 2020 N/A 220.41 762.19 0.98 2.30
Learning Joint 2D-3D Representations for Depth Completion ICCV 2019 N/A 221.19 752.88 1.14 2.34
DeepLiDAR: Deep Surface Normal Guided Depth Prediction for Outdoor Scene From Sparse LiDAR Data and Single Color Image CVPR 2019 PyTorch 226.50 758.38 1.15 2.56
Depth Completion from Sparse LiDAR Data with Depth-Normal Constraints ICCV 2019 N/A 235.17 777.05 1.13 2.42
Scanline Resolution-Invariant Depth Completion Using a Single Image and Sparse LiDAR Point Cloud RA-L & IROS 2021 N/A 233.34 809.09 1.06 2.57
Confidence propagation through cnns for guided sparse depth regression PAMI 2019 PyTorch 233.26 829.98 1.03 2.60
Self-supervised Sparse-to-Dense: Self- supervised Depth Completion from LiDAR and Monocular Camera ICRA 2019 PyTorch 249.95 814.73 1.21 2.80
Uncertainty-Aware CNNs for Depth Completion: Uncertainty from Beginning to End CVPR 2020 PyTorch 251.77 960.05 1.05 3.37
Sparse and Dense Data with CNNs: Depth Completion and Semantic Segmentation 3DV 2019 N/A 234.81 917.64 0.95 2.17
Depth coefficients for depth completion CVPR 2019 N/A 252.21 988.38 1.13 2.87
Depth estimation via affinity learned with convolutional spatial propagation network ECCV 2018 N/A 279.46 1019.64 1.15 2.93
Learning morphological operators for depth completion ACIVS 2019 N/A 310.49 1045.45 1.57 3.84
Sparsity Invariant CNNs 3DV 2017 Tensorflow 416.14 1419.75 1.29 3.25
Deep Convolutional Compressed Sensing for LiDAR Depth Completion ACCV 2018 Tensorflow 439.48 1325.37 3.19 59.39
Owner
I am a post-doctoral researcher at the UCLA Vision Lab under the supervision of Professor Stefano Soatto.
BarcodeRattler - A Raspberry Pi Powered Barcode Reader to load a game on the Mister FPGA using MBC

Barcode Rattler A Raspberry Pi Powered Barcode Reader to load a game on the Mist

Chrissy 29 Oct 31, 2022
This is the code for Compressing BERT: Studying the Effects of Weight Pruning on Transfer Learning

This is the code for Compressing BERT: Studying the Effects of Weight Pruning on Transfer Learning It includes /bert, which is the original BERT repos

Mitchell Gordon 11 Nov 15, 2022
Official PyTorch implementation of our AAAI22 paper: TransMEF: A Transformer-Based Multi-Exposure Image Fusion Framework via Self-Supervised Multi-Task Learning. Code will be available soon.

Official-PyTorch-Implementation-of-TransMEF Official PyTorch implementation of our AAAI22 paper: TransMEF: A Transformer-Based Multi-Exposure Image Fu

117 Dec 27, 2022
Expressive Power of Invariant and Equivaraint Graph Neural Networks (ICLR 2021)

Expressive Power of Invariant and Equivaraint Graph Neural Networks In this repository, we show how to use powerful GNN (2-FGNN) to solve a graph alig

Marc Lelarge 36 Dec 12, 2022
Official Pytorch Implementation of Relational Self-Attention: What's Missing in Attention for Video Understanding

Relational Self-Attention: What's Missing in Attention for Video Understanding This repository is the official implementation of "Relational Self-Atte

mandos 43 Dec 07, 2022
[NeurIPS 2021] Well-tuned Simple Nets Excel on Tabular Datasets

[NeurIPS 2021] Well-tuned Simple Nets Excel on Tabular Datasets Introduction This repo contains the source code accompanying the paper: Well-tuned Sim

52 Jan 04, 2023
DC540 hacking challenge 0x00005a.

dc540-0x00005a DC540 hacking challenge 0x00005a. PROMOTIONAL VIDEO - WATCH NOW HERE ON YOUTUBE CRITICAL PART 5A VIDEO - WATCH NOW HERE ON YOUTUBE Prio

Kevin Thomas 3 May 09, 2022
GarmentNets: Category-Level Pose Estimation for Garments via Canonical Space Shape Completion

GarmentNets This repository contains the source code for the paper GarmentNets: Category-Level Pose Estimation for Garments via Canonical Space Shape

Columbia Artificial Intelligence and Robotics Lab 43 Nov 21, 2022
A toolkit for Lagrangian-based constrained optimization in Pytorch

Cooper About Cooper is a toolkit for Lagrangian-based constrained optimization in Pytorch. This library aims to encourage and facilitate the study of

Cooper 34 Jan 01, 2023
TSIT: A Simple and Versatile Framework for Image-to-Image Translation

TSIT: A Simple and Versatile Framework for Image-to-Image Translation This repository provides the official PyTorch implementation for the following p

Liming Jiang 255 Nov 23, 2022
FMA: A Dataset For Music Analysis

FMA: A Dataset For Music Analysis Michaël Defferrard, Kirell Benzi, Pierre Vandergheynst, Xavier Bresson. International Society for Music Information

Michaël Defferrard 1.8k Dec 29, 2022
Change is Everywhere: Single-Temporal Supervised Object Change Detection in Remote Sensing Imagery (ICCV 2021)

Change is Everywhere Single-Temporal Supervised Object Change Detection in Remote Sensing Imagery by Zhuo Zheng, Ailong Ma, Liangpei Zhang and Yanfei

Zhuo Zheng 125 Dec 13, 2022
Dynamic Neural Representational Decoders for High-Resolution Semantic Segmentation

Dynamic Neural Representational Decoders for High-Resolution Semantic Segmentation Requirements This repository needs mmsegmentation Training To train

Adelaide Intelligent Machines (AIM) Group 7 Sep 12, 2022
Implementation of "Fast and Flexible Temporal Point Processes with Triangular Maps" (Oral @ NeurIPS 2020)

Fast and Flexible Temporal Point Processes with Triangular Maps This repository includes a reference implementation of the algorithms described in "Fa

Oleksandr Shchur 20 Dec 02, 2022
DUE: End-to-End Document Understanding Benchmark

This is the repository that provide tools to download data, reproduce the baseline results and evaluation. What can you achieve with this guide Based

21 Dec 29, 2022
Application of K-means algorithm on a music dataset after a dimensionality reduction with PCA

PCA for dimensionality reduction combined with Kmeans Goal The Goal of this notebook is to apply a dimensionality reduction on a big dataset in order

Arturo Ghinassi 0 Sep 17, 2022
Official PyTorch implementation of the paper "Likelihood Training of Schrödinger Bridge using Forward-Backward SDEs Theory (SB-FBSDE)"

Official PyTorch implementation of the paper "Likelihood Training of Schrödinger Bridge using Forward-Backward SDEs Theory (SB-FBSDE)" which introduces a new class of deep generative models that gene

Guan-Horng Liu 43 Jan 03, 2023
PyTorch implementation of SampleRNN: An Unconditional End-to-End Neural Audio Generation Model

samplernn-pytorch A PyTorch implementation of SampleRNN: An Unconditional End-to-End Neural Audio Generation Model. It's based on the reference implem

DeepSound 261 Dec 14, 2022
[SIGGRAPH'22] StyleGAN-XL: Scaling StyleGAN to Large Diverse Datasets

[Project] [PDF] This repository contains code for our SIGGRAPH'22 paper "StyleGAN-XL: Scaling StyleGAN to Large Diverse Datasets" by Axel Sauer, Katja

742 Jan 04, 2023
RepVGG: Making VGG-style ConvNets Great Again

RepVGG: Making VGG-style ConvNets Great Again (PyTorch) This is a super simple ConvNet architecture that achieves over 80% top-1 accuracy on ImageNet

2.8k Jan 04, 2023