CoMoGAN: continuous model-guided image-to-image translation. CVPR 2021 oral.

Overview

CoMoGAN: Continuous Model-guided Image-to-Image Translation

Official repository.

Paper

CoMoGAN

CoMoGAN

CoMoGAN: continuous model-guided image-to-image translation [arXiv] | [supp] | [teaser]
Fabio Pizzati, Pietro Cerri, Raoul de Charette
Inria, Vislab Ambarella. CVPR'21 (oral)

If you find our work useful, please cite:

@inproceedings{pizzati2021comogan,
  title={{CoMoGAN}: continuous model-guided image-to-image translation},
  author={Pizzati, Fabio and Cerri, Pietro and de Charette, Raoul},
  booktitle={CVPR},
  year={2021}
}

Prerequisites

Tested with:

  • Python 3.7
  • Pytorch 1.7.1
  • CUDA 11.0
  • Pytorch Lightning 1.1.8
  • waymo_open_dataset 1.3.0

Preparation

The repository contains training and inference code for CoMo-MUNIT training on waymo open dataset. In the paper, we refer to this experiment as Day2Timelapse. All the models have been trained on a 32GB Tesla V100 GPU. We also provide a mixed precision training which should fit smaller GPUs as well (a usual training takes ~9GB).

Environment setup

We advise the creation of a new conda environment including all necessary packages. The repository includes a requirements file. Please create and activate the new environment with

conda env create -f requirements.yml
conda activate comogan

Dataset preparation

First, download the Waymo Open Dataset from the official website. The dataset is organized in .tfrecord files, which we preprocess and split depending on metadata annotations on time of day. Once you downloaded the dataset, you should run the dump_waymo.py script. It will read and unpack the .tfrecord files, also resizing the images for training. Please run

python scripts/dump_waymo.py --load_path path/of/waymo/open/training --save_path /path/of/extracted/training/images
python scripts/dump_waymo.py --load_path path/of/waymo/open/validation --save_path /path/of/extracted/validation/images

Running those commands should result in a similar directory structure:

root
  training
    Day
      seq_code_0_im_code_0.png
      seq_code_0_im_code_1.png
      ...
      seq_code_1_im_code_0.png
      ...
  Dawn/Dusk
      ...
  Night
      ...
  validation
    Day
      ...
    Dawn/Dusk
      ...
    Night
      ...

Pretrained weights

We release a pretrained set of weights to allow reproducibility of our results. The weights are downloadable from here. Once downloaded, unpack the file in the root of the project and test them with the inference notebook.

Training

The training routine of CoMoGAN is mainly based on the CycleGAN codebase, available with details in the official repository.

To launch a default training, run

python train.py --path_data path/to/waymo/training/dir --gpus 0

You can choose on which GPUs to train with the --gpus flag. Multi-GPU is not deeply tested but it should be managed internally by Pytorch Lightning. Typically, a full training requires 13GB+ of GPU memory unless mixed precision is set. If you have a smaller GPU, please run

python train.py --path_data path/to/waymo/training/dir --gpus 0 --mixed_precision

Please note that performances on mixed precision trainings are evaluated only qualitatively.

Experiment organization

In the training routine, an unique ID will be assigned to every training. All experiments will be saved in the logs folder, which is structured in this way:

logs/
  train_ID_0
    tensorboard/default/version_0
      checkpoints
        model_35000.pth
        ...
      hparams.yaml
      tb_log_file
  train_ID_1
    ...

In the checkpoints folder, all the intermediate checkpoints will be stored. hparams.yaml contains all the hyperparameters for a given run. You can launch a tensorboard --logdir train_ID instance on training directories to visualize intermediate outputs and loss functions.

To resume a previously stopped training, running

python train.py --id train_ID --path_data path/to/waymo/training/dir --gpus 0

will load the latest checkpoint from a given train ID checkpoints directory.

Extending the code

Command line arguments

We expose command line arguments to encourage code reusability and adaptability to other datasets or models. Right now, the available options thought for extensions are:

  • --debug: Disables logging and experiment saving. Useful for testing code modifications.
  • --model: Loads a CoMoGAN model. By default, it loads CoMo-MUNIT (code is in networks folder)
  • --data_importer: Loads data from a dataset. By default, it loads waymo for the day2timelapse experiment (code is in data folder).
  • --learning_rate: Modifies learning rate, default value for CoMo-MUNIT is 1e-4.
  • --scheduler_policy: You can choose among linear os step policy, taken respectively from CycleGAN and MUNIT training routines. Default is step.
  • --decay_iters_step: For step policy, how many iterations before reducing learning rate
  • --decay_step_gamma: Regulates how much to reduce the learning rate
  • --seed: Random seed initialization

The codebase have been rewritten almost from scratch after CVPR acceptance and optimized for reproducibility, hence the seed provided could give slightly different results from the ones reported in the paper.

Changing model and dataset requires extending the networks/base_model.py and data/base_dataset.py class, respectively. Please look into CycleGAN repository for further instructions.

Model, dataset and other options

Specific hyperparameters for different models, datasets or options not changing with high frequency are embedded in munch dictionaries in the relative classes. For instance, in networks/comomunit_model.py you can find all customizable options for CoMo-MUNIT. The same is valid for data/day2timelapse_dataset.py. The options folder includes additional options on checkpoint saving intervals and logging.

Inference

Once you trained a model, you can use the infer.ipynb notebook to visualize translation results. After having launched a notebook instance, you will be required to select the train_id of the experiment. The notebook is documented and it provides widgets for sequence, checkpoint and translation selection.

You can also use the translate.py script to translate all the images inside a directory or a sequence of images to another target directory.

python scripts/translate.py --load_path path/to/waymo/validation/day/dir --save_path path/to/saving/dir --phi 3.14

Will load image from the indicated path before translating it to a night style image due to the phi set to 3.14.

  • --phi: (𝜙) is the angle of the sun with a value between [0,2𝜋], which maps to a sun elevation ∈ [+30◦,−40◦]
  • --sequence: if you want to use only certain images, you can specify a name or a keyword contained in the image's name like --sequence segment-10203656353524179475
  • --checkpoint: if your folder logs contains more than one train_ID or if you want to select an older checkpoint, you should indicate the path to the checkpoint contained in the folder with the train_ID that you want like --checkpoint logs/train_ID_0/tensorboard/default/version_0/checkpoints/model_35000.pth

Docker

You will find a Dockerfile based on the nvidia/cuda:11.0.3-base-ubuntu18.04 image with all the dependencies that you need to run and test the code. To build it and to run it :

docker build -t notebook/comogan:1.0 .
docker run -it -v /path/to/your/local/datasets/:/datasets -p 8888:8888 --gpus '"device=0"' notebook/comogan:1.0
  • --gpus: gives you the possibility to only parse the GPU that you want to use, by default, all the available GPUs are parsed.
  • -v: mount the local directory that contained your dataset
  • -p: this option is only used for the infer.ipynb notebook. If you run the notebook on a remote server, you should also use this command to tunnel the output to your computer ssh [email protected] -NL 8888:127.0.0.1:8888
Owner
Codes from Computer Vision group of RITS Team, Inria
JugLab 33 Dec 30, 2022
Source code release of the paper: Knowledge-Guided Deep Fractal Neural Networks for Human Pose Estimation.

GNet-pose Project Page: http://guanghan.info/projects/guided-fractal/ UPDATE 9/27/2018: Prototxts and model that achieved 93.9Pck on LSP dataset. http

Guanghan Ning 83 Nov 21, 2022
Spectrum is an AI that uses machine learning to generate Rap song lyrics

Spectrum Spectrum is an AI that uses deep learning to generate rap song lyrics. View Demo Report Bug Request Feature Open In Colab About The Project S

39 Dec 16, 2022
DL course co-developed by YSDA, HSE and Skoltech

Deep learning course This repo supplements Deep Learning course taught at YSDA and HSE @fall'21. For previous iteration visit the spring21 branch. Lec

Yandex School of Data Analysis 1.3k Dec 30, 2022
This repo contains the code for the paper "Efficient hierarchical Bayesian inference for spatio-temporal regression models in neuroimaging" that has been accepted to NeurIPS 2021.

Dugh-NeurIPS-2021 This repo contains the code for the paper "Efficient hierarchical Bayesian inference for spatio-temporal regression models in neuroi

Ali Hashemi 5 Jul 12, 2022
Introducing neural networks to predict stock prices

IntroNeuralNetworks in Python: A Template Project IntroNeuralNetworks is a project that introduces neural networks and illustrates an example of how o

Vivek Palaniappan 637 Jan 04, 2023
Code for the ICCV'21 paper "Context-aware Scene Graph Generation with Seq2Seq Transformers"

ICCV'21 Context-aware Scene Graph Generation with Seq2Seq Transformers Authors: Yichao Lu*, Himanshu Rai*, Cheng Chang*, Boris Knyazev†, Guangwei Yu,

Layer6 Labs 37 Dec 18, 2022
SOTR: Segmenting Objects with Transformers [ICCV 2021]

SOTR: Segmenting Objects with Transformers [ICCV 2021] By Ruohao Guo, Dantong Niu, Liao Qu, Zhenbo Li Introduction This is the official implementation

186 Dec 20, 2022
[NeurIPS'21] "AugMax: Adversarial Composition of Random Augmentations for Robust Training" by Haotao Wang, Chaowei Xiao, Jean Kossaifi, Zhiding Yu, Animashree Anandkumar, and Zhangyang Wang.

AugMax: Adversarial Composition of Random Augmentations for Robust Training Haotao Wang, Chaowei Xiao, Jean Kossaifi, Zhiding Yu, Anima Anandkumar, an

VITA 112 Nov 07, 2022
Official PyTorch implementation of "Contrastive Learning from Extremely Augmented Skeleton Sequences for Self-supervised Action Recognition" in AAAI2022.

AimCLR This is an official PyTorch implementation of "Contrastive Learning from Extremely Augmented Skeleton Sequences for Self-supervised Action Reco

Gty 44 Dec 17, 2022
Black-Box-Tuning - Black-Box Tuning for Language-Model-as-a-Service

Black-Box-Tuning Source code for paper "Black-Box Tuning for Language-Model-as-a-Service". Being busy recently, the code in this repo and this tutoria

Tianxiang Sun 149 Jan 04, 2023
B2EA: An Evolutionary Algorithm Assisted by Two Bayesian Optimization Modules for Neural Architecture Search

B2EA: An Evolutionary Algorithm Assisted by Two Bayesian Optimization Modules for Neural Architecture Search This is the offical implementation of the

SNU ADSL 0 Feb 07, 2022
Pytorch implemenation of Stochastic Multi-Label Image-to-image Translation (SMIT)

SMIT: Stochastic Multi-Label Image-to-image Translation This repository provides a PyTorch implementation of SMIT. SMIT can stochastically translate a

Biomedical Computer Vision Group @ Uniandes 37 Mar 01, 2022
This is code of book "Learn Deep Learning with PyTorch"

深度学习入门之PyTorch Learn Deep Learning with PyTorch 非常感谢您能够购买此书,这个github repository包含有深度学习入门之PyTorch的实例代码。由于本人水平有限,在写此书的时候参考了一些网上的资料,在这里对他们表示敬意。由于深度学习的技术在

Xingyu Liao 2.5k Jan 04, 2023
DeepConsensus uses gap-aware sequence transformers to correct errors in Pacific Biosciences (PacBio) Circular Consensus Sequencing (CCS) data.

DeepConsensus DeepConsensus uses gap-aware sequence transformers to correct errors in Pacific Biosciences (PacBio) Circular Consensus Sequencing (CCS)

Google 149 Dec 19, 2022
The official repo for OC-SORT: Observation-Centric SORT on video Multi-Object Tracking. OC-SORT is simple, online and robust to occlusion/non-linear motion.

OC-SORT Observation-Centric SORT (OC-SORT) is a pure motion-model-based multi-object tracker. It aims to improve tracking robustness in crowded scenes

Jinkun Cao 325 Jan 05, 2023
Bonnet: An Open-Source Training and Deployment Framework for Semantic Segmentation in Robotics.

Bonnet: An Open-Source Training and Deployment Framework for Semantic Segmentation in Robotics. By Andres Milioto @ University of Bonn. (for the new P

Photogrammetry & Robotics Bonn 314 Dec 30, 2022
Pytorch implementation for "Distribution-Balanced Loss for Multi-Label Classification in Long-Tailed Datasets" (ECCV 2020 Spotlight)

Distribution-Balanced Loss [Paper] The implementation of our paper Distribution-Balanced Loss for Multi-Label Classification in Long-Tailed Datasets (

Tong WU 304 Dec 22, 2022
Data and Code for ACL 2021 Paper "Inter-GPS: Interpretable Geometry Problem Solving with Formal Language and Symbolic Reasoning"

Introduction Code and data for ACL 2021 Paper "Inter-GPS: Interpretable Geometry Problem Solving with Formal Language and Symbolic Reasoning". We cons

Pan Lu 81 Dec 27, 2022
Setup and customize deep learning environment in seconds.

Deepo is a series of Docker images that allows you to quickly set up your deep learning research environment supports almost all commonly used deep le

Ming 6.3k Jan 06, 2023