This is an official implementation for "Video Swin Transformers".

Overview

Video Swin Transformer

PWC PWC PWC

By Ze Liu*, Jia Ning*, Yue Cao, Yixuan Wei, Zheng Zhang, Stephen Lin and Han Hu.

This repo is the official implementation of "Video Swin Transformer". It is based on mmaction2.

Updates

06/25/2021 Initial commits

Introduction

Video Swin Transformer is initially described in "Video Swin Transformer", which advocates an inductive bias of locality in video Transformers, leading to a better speed-accuracy trade-off compared to previous approaches which compute self-attention globally even with spatial-temporal factorization. The locality of the proposed video architecture is realized by adapting the Swin Transformer designed for the image domain, while continuing to leverage the power of pre-trained image models. Our approach achieves state-of-the-art accuracy on a broad range of video recognition benchmarks, including on action recognition (84.9 top-1 accuracy on Kinetics-400 and 86.1 top-1 accuracy on Kinetics-600 with ~20x less pre-training data and ~3x smaller model size) and temporal modeling (69.6 top-1 accuracy on Something-Something v2).

teaser

Results and Models

Kinetics 400

Backbone Pretrain Lr Schd spatial crop [email protected] [email protected] #params FLOPs config model
Swin-T ImageNet-1K 30ep 224 78.8 93.6 28M 87.9G config github/baidu
Swin-S ImageNet-1K 30ep 224 80.6 94.5 50M 165.9G config github/baidu
Swin-B ImageNet-1K 30ep 224 80.6 94.6 88M 281.6G config github/baidu
Swin-B ImageNet-22K 30ep 224 82.7 95.5 88M 281.6G config github/baidu

Kinetics 600

Backbone Pretrain Lr Schd spatial crop [email protected] [email protected] #params FLOPs config model
Swin-B ImageNet-22K 30ep 224 84.0 96.5 88M 281.6G config github/baidu

Something-Something V2

Backbone Pretrain Lr Schd spatial crop [email protected] [email protected] #params FLOPs config model
Swin-B Kinetics 400 60ep 224 69.6 92.7 89M 320.6G config github/baidu

Notes:

Usage

Installation

Please refer to install.md for installation.

We also provide docker file cuda10.1 (image url) and cuda11.0 (image url) for convenient usage.

Data Preparation

Please refer to data_preparation.md for a general knowledge of data preparation. The supported datasets are listed in supported_datasets.md.

Inference

# single-gpu testing
python tools/test.py <CONFIG_FILE> <CHECKPOINT_FILE> --eval top_k_accuracy

# multi-gpu testing
bash tools/dist_test.sh <CONFIG_FILE> <CHECKPOINT_FILE> <GPU_NUM> --eval top_k_accuracy

Training

To train a video recognition model with pre-trained image models (for Kinetics-400 and Kineticc-600 datasets), run:

# single-gpu training
python tools/train.py <CONFIG_FILE> --cfg-options model.backbone.pretrained=<PRETRAIN_MODEL> [model.backbone.use_checkpoint=True] [other optional arguments]

# multi-gpu training
bash tools/dist_train.sh <CONFIG_FILE> <GPU_NUM> --cfg-options model.backbone.pretrained=<PRETRAIN_MODEL> [model.backbone.use_checkpoint=True] [other optional arguments]

For example, to train a Swin-T model for Kinetics-400 dataset with 8 gpus, run:

bash tools/dist_train.sh configs/recognition/swin/swin_tiny_patch244_window877_kinetics400_1k.py 8 --cfg-options model.backbone.pretrained=<PRETRAIN_MODEL> 

To train a video recognizer with pre-trained video models (for Something-Something v2 datasets), run:

# single-gpu training
python tools/train.py <CONFIG_FILE> --cfg-options load_from=<PRETRAIN_MODEL> [model.backbone.use_checkpoint=True] [other optional arguments]

# multi-gpu training
bash tools/dist_train.sh <CONFIG_FILE> <GPU_NUM> --cfg-options load_from=<PRETRAIN_MODEL> [model.backbone.use_checkpoint=True] [other optional arguments]

For example, to train a Swin-B model for SSv2 dataset with 8 gpus, run:

bash tools/dist_train.sh configs/recognition/swin/swin_base_patch244_window1677_sthv2.py 8 --cfg-options load_from=<PRETRAIN_MODEL>

Note: use_checkpoint is used to save GPU memory. Please refer to this page for more details.

Apex (optional):

We use apex for mixed precision training by default. To install apex, use our provided docker or run:

git clone https://github.com/NVIDIA/apex
cd apex
pip install -v --disable-pip-version-check --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" ./

If you would like to disable apex, comment out the following code block in the configuration files:

# do not use mmcv version fp16
fp16 = None
optimizer_config = dict(
    type="DistOptimizerHook",
    update_interval=1,
    grad_clip=None,
    coalesce=True,
    bucket_size_mb=-1,
    use_fp16=True,
)

Citation

If you find our work useful in your research, please cite:

@article{liu2021video,
  title={Video Swin Transformer},
  author={Liu, Ze and Ning, Jia and Cao, Yue and Wei, Yixuan and Zhang, Zheng and Lin, Stephen and Hu, Han},
  journal={arXiv preprint arXiv:2106.13230},
  year={2021}
}

@article{liu2021Swin,
  title={Swin Transformer: Hierarchical Vision Transformer using Shifted Windows},
  author={Liu, Ze and Lin, Yutong and Cao, Yue and Hu, Han and Wei, Yixuan and Zhang, Zheng and Lin, Stephen and Guo, Baining},
  journal={arXiv preprint arXiv:2103.14030},
  year={2021}
}

Other Links

Image Classification: See Swin Transformer for Image Classification.

Object Detection: See Swin Transformer for Object Detection.

Semantic Segmentation: See Swin Transformer for Semantic Segmentation.

Self-Supervised Learning: See MoBY with Swin Transformer.

Owner
Swin Transformer
This organization maintains repositories built on Swin Transformers. The pretrained models locate at https://github.com/microsoft/Swin-Transformer
Swin Transformer
Python and C++ implementation of "MarkerPose: Robust real-time planar target tracking for accurate stereo pose estimation". Accepted at LXCV @ CVPR 2021.

MarkerPose: Robust real-time planar target tracking for accurate stereo pose estimation This is a PyTorch and LibTorch implementation of MarkerPose: a

Jhacson Meza 47 Nov 18, 2022
Official Implementation of SWAGAN: A Style-based Wavelet-driven Generative Model

Official Implementation of SWAGAN: A Style-based Wavelet-driven Generative Model SWAGAN: A Style-based Wavelet-driven Generative Model Rinon Gal, Dana

55 Dec 06, 2022
Official Implementation of 'UPDeT: Universal Multi-agent Reinforcement Learning via Policy Decoupling with Transformers' ICLR 2021(spotlight)

UPDeT Official Implementation of UPDeT: Universal Multi-agent Reinforcement Learning via Policy Decoupling with Transformers (ICLR 2021 spotlight) The

hhhusiyi 96 Dec 22, 2022
This Repo is the official CUDA implementation of ICCV 2019 Oral paper for CARAFE: Content-Aware ReAssembly of FEatures

Introduction This Repo is the official CUDA implementation of ICCV 2019 Oral paper for CARAFE: Content-Aware ReAssembly of FEatures. @inproceedings{Wa

Jiaqi Wang 42 Jan 07, 2023
Revitalizing CNN Attention via Transformers in Self-Supervised Visual Representation Learning

Revitalizing CNN Attention via Transformers in Self-Supervised Visual Representation Learning

ChongjianGE 89 Dec 02, 2022
Meli Data Challenge 2021 - First Place Solution

My solution for the Meli Data Challenge 2021

Matias Moreyra 23 Mar 09, 2022
Official PyTorch implementation of "Evolving Search Space for Neural Architecture Search"

Evolving Search Space for Neural Architecture Search Usage Install all required dependencies in requirements.txt and replace all ..path/..to in the co

Yuanzheng Ci 10 Oct 24, 2022
An implementation of MobileFormer

MobileFormer An implementation of MobileFormer proposed by Yinpeng Chen, Xiyang Dai et al. Including [1] Mobile-Former proposed in:

slwang9353 62 Dec 28, 2022
OpenIPDM is a MATLAB open-source platform that stands for infrastructures probabilistic deterioration model

Open-Source Toolbox for Infrastructures Probabilistic Deterioration Modelling OpenIPDM is a MATLAB open-source platform that stands for infrastructure

CIVML 0 Jan 20, 2022
A forwarding MPI implementation that can use any other MPI implementation via an MPI ABI

MPItrampoline MPI wrapper library: MPI trampoline library: MPI integration tests: MPI is the de-facto standard for inter-node communication on HPC sys

Erik Schnetter 31 Dec 22, 2022
High-fidelity 3D Model Compression based on Key Spheres

High-fidelity 3D Model Compression based on Key Spheres This repository contains the implementation of the paper: Yuanzhan Li, Yuqi Liu, Yujie Lu, Siy

5 Oct 11, 2022
Official PyTorch implementation of "Preemptive Image Robustification for Protecting Users against Man-in-the-Middle Adversarial Attacks" (AAAI 2022)

Preemptive Image Robustification for Protecting Users against Man-in-the-Middle Adversarial Attacks This is the code for reproducing the results of th

2 Dec 27, 2021
Tilted Empirical Risk Minimization (ICLR '21)

Tilted Empirical Risk Minimization This repository contains the implementation for the paper Tilted Empirical Risk Minimization ICLR 2021 Empirical ri

Tian Li 40 Nov 28, 2022
Code to compute permutation and drop-column importances in Python scikit-learn models

Feature importances for scikit-learn machine learning models By Terence Parr and Kerem Turgutlu. See Explained.ai for more stuff. The scikit-learn Ran

Terence Parr 537 Dec 31, 2022
Code and description for my BSc Project, September 2021

BSc-Project Disclaimer: This repo consists of only the additional python scripts necessary to run the agent. To run the project on your own personal d

Matin Tavakoli 20 Jul 19, 2022
Codes for "CSDI: Conditional Score-based Diffusion Models for Probabilistic Time Series Imputation"

CSDI This is the github repository for the NeurIPS 2021 paper "CSDI: Conditional Score-based Diffusion Models for Probabilistic Time Series Imputation

106 Jan 04, 2023
Unofficial TensorFlow implementation of Protein Interface Prediction using Graph Convolutional Networks.

[TensorFlow] Protein Interface Prediction using Graph Convolutional Networks Unofficial TensorFlow implementation of Protein Interface Prediction usin

YeongHyeon Park 9 Oct 25, 2022
CoReNet is a technique for joint multi-object 3D reconstruction from a single RGB image.

CoReNet CoReNet is a technique for joint multi-object 3D reconstruction from a single RGB image. It produces coherent reconstructions, where all objec

Google Research 80 Dec 25, 2022
Model Agnostic Interpretability for Multiple Instance Learning

MIL Model Agnostic Interpretability This repo contains the code for "Model Agnostic Interpretability for Multiple Instance Learning". Overview Executa

Joe Early 10 Dec 17, 2022
This repo contains the official implementations of EigenDamage: Structured Pruning in the Kronecker-Factored Eigenbasis

EigenDamage: Structured Pruning in the Kronecker-Factored Eigenbasis This repo contains the official implementations of EigenDamage: Structured Prunin

Chaoqi Wang 107 Apr 20, 2022