A light-weight image labelling tool for Python designed for creating segmentation data sets.

Overview

django-labeller

A light-weight image labelling tool for Python designed for creating segmentation data sets.

  • compatible with Django, Flask and Qt
  • polygon, box, point and oriented ellipse annotations supported
  • polygonal labels can have disjoint regions and can be editing using paintng and boolean operations; provided by polybooljs
  • can use the DEXTR algorithm to automatically generate polygonal outlines of objects identified by the user with a few clicks; provided by the dextr library
New in v0.3: schema editor for editing label classes
Django Labeller in action:

Django labeller movie


Schema editor (new in v0.3):

Django labeller movie


Django, Flask or Qt?

If you want to run django-labeller on your local machine with minimum fuss and store the image and label files on your file system, use either the Flask application or the Qt application.

If you want to incorporate django-labeller into your Django application, use the Django app/plugin as it provides model classes that store labels in your database, etc.

Installation

If you to use the example Django application or use the provided example images, clone it from GitHub and install (recommended):

> git clone https://github.com/Britefury/django-labeller.git
> python setup.py install

To use it as a library, either with Flask or Django, install from PyPI:

> pip install django-labeller

Note:

  • pip install django-labeller[django] will also install the Django dependency
  • pip install django-labeller[dextr] will also install the dextr library

Examples

Flask web app example, running on your local machine

An example Flask-based web app is provided that displays the labelling tool within a web page. To start it, change into the same directory into which you cloned the repo and run:

> python -m image_labelling_tool.flask_labeller 

Now open 127.0.0.1:5000 within a browser.

If you want to load images from a different directory, or if you installed from PyPI, tell flask_labeller where to look:

> python -m image_labelling_tool.flask_labeller --images_pat=<images_directory>/*.<jpg|png>

Flask app with DEXTR assisted labelling

First, install the dextr library:

> pip install dextr

Now tell the Flask app to enable DEXTR using the --enable_dextr option:

> python -m image_labelling_tool.flask_labeller --enable_dextr

The above will use the ResNet-101 based DEXTR model trained on Pascal VOC 2012 that is provided by the dextr library. If you want to use a custom DEXTR model that you trained for your purposes, use the --dextr_weights option:

> python -m image_labelling_tool.flask_labeller --dextr_weights=path/to/model.pth

Qt desktop application

Requirements

PyQt5 and flask need to be installed, both of which can be installed using conda if using an Anaconda distribution.
Optionally install PyTorch and the dextr library if you want to use a DEXTR model for automatically assisted annotation.

Running

A simple Qt-based desktop application allows you to choose a directory of images to label. To start it, change into the same directory into which you cloned the repo and run:

> python -m image_labelling_tool_qt.simple_labeller 

A dialog will appear prompting you to choose a directory of images to label. The Enable DEXTR checkbox will enable DEXTR assisted automated labelling. Note that this requires that PyTorch and the dextr library are both installed in your Python environment.

The Qt desktop application uses QWebEngine to show the web-based component in a Qt UI. A Flask server is started in the background that serves the tool HTML, static files and images.

Django web app example

The example Django-based web app provides a little more functionality than the Flask app. It stores the label data in a database (only SQLite in the example) and does basic image locking so that multiple users cannot work on the same image at the same time.

To initialise, first perform migrations:

> python simple_django_labeller/manage.py migrate

Now you need to import a labelling schema. Labelling schemes are stored as JSON files. For now, there is a special one called demo that you can use. Load it into a schema named default:

> python simple_django_labeller/manage.py import_schema default demo

Then populate the database with the example images in the images directory (replace images with the path of another directory if you wish to use different images):

> python simple_django_labeller/manage.py populate images

Then run the app:

> python simple_django_labeller/manage.py runserver

Django app with DEXTR assisted labelling

First, install the dextr library and celery:

> pip install dextr
> pip install celery

Now install RabbitMQ, using the appropriate approach for your platform (you could use a different Celery backend if you don't mind editing settings.py as needed).

Enable DEXTR within tests/example_labeller_app/settings.py; change the line

LABELLING_TOOL_DEXTR_AVAILABLE = False

so that LABELLING_TOOL_DEXTR_AVAILABLE is set to True.

You can also change the LABELLING_TOOL_DEXTR_WEIGHTS_PATH option to a path to a custom model, otherwise the default ResNet-101 based U-net trained on Pascal VOC 2012 provided by the dextr library will be used.

Now run the Django application:

> cd simple_django_labeller
> python manage.py runserver

Now start a celery worker:

> cd simple_django_labeller
> celery -A example_labeller_app worker -l info

Note that Celery v4 and above are not strictly compatible with Windows, but it can work if you run:

> celery -A example_labeller_app worker --pool=solo -l info

API and label access

Please see the Jupyter notebook Image labeller notebook.ipynb for API usage. It will show you how to load labels and render them into class maps, instance maps, or image stacks.

Changes

Please see the change log for recent changes.

Libraries, Credits and License

Incorporates the public domain json2.js library. Uses d3.js, jQuery, popper.js, PolyK, polybooljs, Bootstrap 4, Vue.js v3 and spectrum.js.

This software was developed by Geoffrey French in collaboration with Dr. M. Fisher and Dr. M. Mackiewicz at the School of Computing Sciences at the University of East Anglia as part of a project funded by Marine Scotland.

It is licensed under the MIT license.

DeepMind's software stack for physics-based simulation and Reinforcement Learning environments, using MuJoCo.

dm_control: DeepMind Infrastructure for Physics-Based Simulation. DeepMind's software stack for physics-based simulation and Reinforcement Learning en

DeepMind 3k Dec 31, 2022
Source code of D-HAN: Dynamic News Recommendation with Hierarchical Attention Network

D-HAN The source code of D-HAN This is the source code of D-HAN: Dynamic News Recommendation with Hierarchical Attention Network. However, only the co

30 Sep 22, 2022
Spatial Contrastive Learning for Few-Shot Classification (SCL)

This repo contains the official implementation of Spatial Contrastive Learning for Few-Shot Classification (SCL), which presents of a novel contrastive learning method applied to few-shot image class

Yassine 34 Dec 25, 2022
PyTorch implementation of Hierarchical Multi-label Text Classification: An Attention-based Recurrent Network

hierarchical-multi-label-text-classification-pytorch Hierarchical Multi-label Text Classification: An Attention-based Recurrent Network Approach This

Mingu Kang 17 Dec 13, 2022
This is the repository for The Machine Learning Workshops, published by AI DOJO

This is the repository for The Machine Learning Workshops, published by AI DOJO. It contains all the workshop's code with supporting project files necessary to work through the code.

AI Dojo 12 May 06, 2022
Code for Temporally Abstract Partial Models

Code for Temporally Abstract Partial Models Accompanies the code for the experimental section of the paper: Temporally Abstract Partial Models, Khetar

DeepMind 19 Jul 13, 2022
Código de um painel de auto atendimento feito em Python.

Painel de Auto-Atendimento O intuito desse projeto era fazer em Python um programa que simulasse um painel de auto atendimento, no maior estilo Mac Do

Calebe Alves Evangelista 2 Nov 09, 2022
Multilingual Image Captioning

Multilingual Image Captioning Authors: Bhavitvya Malik, Gunjan Chhablani Demo Link: https://huggingface.co/spaces/flax-community/multilingual-image-ca

Gunjan Chhablani 32 Nov 25, 2022
Pytorch implementation of "Neural Wireframe Renderer: Learning Wireframe to Image Translations"

Neural Wireframe Renderer: Learning Wireframe to Image Translations Pytorch implementation of ideas from the paper Neural Wireframe Renderer: Learning

Yuan Xue 7 Nov 14, 2022
PERIN is Permutation-Invariant Semantic Parser developed for MRP 2020

PERIN: Permutation-invariant Semantic Parsing David Samuel & Milan Straka Charles University Faculty of Mathematics and Physics Institute of Formal an

ÚFAL 40 Jan 04, 2023
Learning to Map Large-scale Sparse Graphs on Memristive Crossbar

Release of AutoGMap:Learning to Map Large-scale Sparse Graphs on Memristive Crossbar For reproduction of our searched model, the Ubuntu OS is recommen

2 Aug 23, 2022
This is the code for the paper "Jinkai Zheng, Xinchen Liu, Wu Liu, Lingxiao He, Chenggang Yan, Tao Mei: Gait Recognition in the Wild with Dense 3D Representations and A Benchmark. (CVPR 2022)"

Gait3D-Benchmark This is the code for the paper "Jinkai Zheng, Xinchen Liu, Wu Liu, Lingxiao He, Chenggang Yan, Tao Mei: Gait Recognition in the Wild

82 Jan 04, 2023
A collection of easy-to-use, ready-to-use, interesting deep neural network models

Interesting and reproducible research works should be conserved. This repository wraps a collection of deep neural network models into a simple and un

Aria Ghora Prabono 16 Jun 16, 2022
Relative Uncertainty Learning for Facial Expression Recognition

Relative Uncertainty Learning for Facial Expression Recognition The official implementation of the following paper at NeurIPS2021: Title: Relative Unc

35 Dec 28, 2022
Supplemental learning materials for "Fourier Feature Networks and Neural Volume Rendering"

Fourier Feature Networks and Neural Volume Rendering This repository is a companion to a lecture given at the University of Cambridge Engineering Depa

Matthew A Johnson 133 Dec 26, 2022
Official Implementation of HRDA: Context-Aware High-Resolution Domain-Adaptive Semantic Segmentation

HRDA: Context-Aware High-Resolution Domain-Adaptive Semantic Segmentation by Lukas Hoyer, Dengxin Dai, and Luc Van Gool [Arxiv] [Paper] Overview Unsup

Lukas Hoyer 149 Dec 28, 2022
《LightXML: Transformer with dynamic negative sampling for High-Performance Extreme Multi-label Text Classification》(AAAI 2021) GitHub:

LightXML: Transformer with dynamic negative sampling for High-Performance Extreme Multi-label Text Classification

76 Dec 05, 2022
PyContinual (An Easy and Extendible Framework for Continual Learning)

PyContinual (An Easy and Extendible Framework for Continual Learning) Easy to Use You can sumply change the baseline, backbone and task, and then read

Zixuan Ke 176 Jan 05, 2023
A diff tool for language models

LMdiff Qualitative comparison of large language models. Demo & Paper: http://lmdiff.net LMdiff is a MIT-IBM Watson AI Lab collaboration between: Hendr

Hendrik Strobelt 27 Dec 29, 2022
Codes for the ICCV'21 paper "FREE: Feature Refinement for Generalized Zero-Shot Learning"

FREE This repository contains the reference code for the paper "FREE: Feature Refinement for Generalized Zero-Shot Learning". [arXiv][Paper] 1. Prepar

Shiming Chen 28 Jul 29, 2022