You Only 👀 One Sequence

Overview

You Only 👀 One Sequence

  • TL;DR: We study the transferability of the vanilla ViT pre-trained on mid-sized ImageNet-1k to the more challenging COCO object detection benchmark.

  • This project is under active development.


You Only Look at One Sequence: Rethinking Transformer in Vision through Object Detection

by Yuxin Fang1 *, Bencheng Liao1 *, Xinggang Wang1 ✉️ , Jiemin Fang2, 1, Jiyang Qi1, Rui Wu3, Jianwei Niu3, Wenyu Liu1.

1 School of EIC, HUST, 2 Institute of AI, HUST, 3 Horizon Robotics.

(*) equal contribution, ( ✉️ ) corresponding author.

arXiv technical report (arXiv 2106.00666)


You Only Look at One Sequence (YOLOS)

The Illustration of YOLOS

yolos

Highlights

Directly inherited from ViT (DeiT), YOLOS is not designed to be yet another high-performance object detector, but to unveil the versatility and transferability of Transformer from image recognition to object detection. Concretely, our main contributions are summarized as follows:

  • We use the mid-sized ImageNet-1k as the sole pre-training dataset, and show that a vanilla ViT (DeiT) can be successfully transferred to perform the challenging object detection task and produce competitive COCO results with the fewest possible modifications, i.e., by only looking at one sequence (YOLOS).

  • We demonstrate that 2D object detection can be accomplished in a pure sequence-to-sequence manner by taking a sequence of fixed-sized non-overlapping image patches as input. Among existing object detectors, YOLOS utilizes minimal 2D inductive biases. Moreover, it is feasible for YOLOS to perform object detection in any dimensional space unaware the exact spatial structure or geometry.

  • For ViT (DeiT), we find the object detection results are quite sensitive to the pre-train scheme and the detection performance is far from saturating. Therefore the proposed YOLOS can be used as a challenging benchmark task to evaluate different pre-training strategies for ViT (DeiT).

  • We also discuss the impacts as wel as the limitations of prevalent pre-train schemes and model scaling strategies for Transformer in vision through transferring to object detection.

Results

Model Pre-train Epochs ViT (DeiT) Weight / Log Fine-tune Epochs Eval Size YOLOS Checkpoint / Log AP @ COCO val
YOLOS-Ti 300 FB 300 512 Baidu Drive, Google Drive / Log 28.7
YOLOS-S 200 Baidu Drive, Google Drive / Log 150 800 Baidu Drive, Google Drive / Log 36.1
YOLOS-S 300 FB 150 800 Baidu Drive, Google Drive / Log 36.1
YOLOS-S (dWr) 300 Baidu Drive, Google Drive / Log 150 800 Baidu Drive, Google Drive / Log 37.6
YOLOS-B 1000 FB 150 800 Baidu Drive, Google Drive / Log 42.0

Notes:

  • The access code for Baidu Drive is yolo.
  • The FB stands for model weights provided by DeiT (paper, code). Thanks for their wonderful works.
  • We will update other models in the future, please stay tuned :)

Requirement

This codebase has been developed with python version 3.6, PyTorch 1.5+ and torchvision 0.6+:

conda install -c pytorch pytorch torchvision

Install pycocotools (for evaluation on COCO) and scipy (for training):

conda install cython scipy
pip install -U 'git+https://github.com/cocodataset/cocoapi.git#subdirectory=PythonAPI'

Data preparation

Download and extract COCO 2017 train and val images with annotations from http://cocodataset.org. We expect the directory structure to be the following:

path/to/coco/
  annotations/  # annotation json files
  train2017/    # train images
  val2017/      # val images

Training

Before finetuning on COCO, you need download the ImageNet pretrained model to the /path/to/YOLOS/ directory

To train the YOLOS-Ti model in the paper, run this command:

python -m torch.distributed.launch \
    --nproc_per_node=8 \
    --use_env main.py \
    --coco_path /path/to/coco
    --batch_size 2 \
    --lr 5e-5 \
    --epochs 300 \
    --backbone_name tiny \
    --pre_trained /path/to/deit-tiny.pth\
    --eval_size 512 \
    --init_pe_size 800 1333 \
    --output_dir /output/path/box_model
To train the YOLOS-S model with 200 epoch pretrained Deit-S in the paper, run this command:

python -m torch.distributed.launch
--nproc_per_node=8
--use_env main.py
--coco_path /path/to/coco --batch_size 1
--lr 2.5e-5
--epochs 150
--backbone_name small
--pre_trained /path/to/deit-small-200epoch.pth
--eval_size 800
--init_pe_size 512 864
--mid_pe_size 512 864
--output_dir /output/path/box_model

To train the YOLOS-S model with 300 epoch pretrained Deit-S in the paper, run this command:

python -m torch.distributed.launch \
    --nproc_per_node=8 \
    --use_env main.py \
    --coco_path /path/to/coco
    --batch_size 1 \
    --lr 2.5e-5 \
    --epochs 150 \
    --backbone_name small \
    --pre_trained /path/to/deit-small-300epoch.pth\
    --eval_size 800 \
    --init_pe_size 512 864 \
    --mid_pe_size 512 864 \
    --output_dir /output/path/box_model

To train the YOLOS-S (dWr) model in the paper, run this command:

python -m torch.distributed.launch \
    --nproc_per_node=8 \
    --use_env main.py \
    --coco_path /path/to/coco
    --batch_size 1 \
    --lr 2.5e-5 \
    --epochs 150 \
    --backbone_name small_dWr \
    --pre_trained /path/to/deit-small-dWr-scale.pth\
    --eval_size 800 \
    --init_pe_size 512 864 \
    --mid_pe_size 512 864 \
    --output_dir /output/path/box_model
To train the YOLOS-B model in the paper, run this command:

python -m torch.distributed.launch \
    --nproc_per_node=8 \
    --use_env main.py \
    --coco_path /path/to/coco
    --batch_size 1 \
    --lr 2.5e-5 \
    --epochs 150 \
    --backbone_name base \
    --pre_trained /path/to/deit-base.pth\
    --eval_size 800 \
    --init_pe_size 800 1344 \
    --mid_pe_size 800 1344 \
    --output_dir /output/path/box_model

Evaluation

To evaluate YOLOS-Ti model on COCO, run:

python main.py --coco_path /path/to/coco --batch_size 2 --backbone_name tiny --eval --eval_size 512 --init_pe_size 800 1333 --resume /path/to/YOLOS-Ti

To evaluate YOLOS-S model on COCO, run:

python main.py --coco_path /path/to/coco --batch_size 1 --backbone_name small --eval --eval_size 800 --init_pe_size 512 864 --mid_pe_size 512 864 --resume /path/to/YOLOS-S

To evaluate YOLOS-S (dWr) model on COCO, run:

python main.py --coco_path /path/to/coco --batch_size 1 --backbone_name small_dWr --eval --eval_size 800 --init_pe_size 512 864 --mid_pe_size 512 864 --resume /path/to/YOLOS-S(dWr)

To evaluate YOLOS-B model on COCO, run:

python main.py --coco_path /path/to/coco --batch_size 1 --backbone_name small --eval --eval_size 800 --init_pe_size 800 1344 --mid_pe_size 800 1344 --resume /path/to/YOLOS-B

Visualization

We have observed some intriguing properties of YOLOS, and we are working on a notebook to better demonstrate them, please stay tuned :)

Visualize box prediction and object categories distribution

  1. To Get visualization in the paper, you need the finetuned YOLOS models on COCO, run following command to get 100 Det-Toks prediction on COCO val split, then it will generate /path/to/YOLOS/visualization/modelname-eval-800-eval-pred.json
python cocoval_predjson_generation.py --coco_path /path/to/coco --batch_size 1 --backbone_name small --eval --eval_size 800 --init_pe_size 512 864 --mid_pe_size 512 864 --resume /path/to/yolos-s-model.pth --output_dir ./visualization
  1. To get all ground truth object categories on all images from COCO val split, run following command to generate /path/to/YOLOS/visualization/coco-valsplit-cls-dist.json
python cocoval_gtclsjson_generation.py --coco_path /path/to/coco --batch_size 1 --output_dir ./visualization
  1. To visualize the distribution of Det-Toks' bboxs and categories, run following command to generate .png files in /path/to/YOLOS/visualization/
 python visualize_dettoken_dist.py --visjson /path/to/YOLOS/visualization/modelname-eval-800-eval-pred.json --cococlsjson /path/to/YOLOS/visualization/coco-valsplit-cls-dist.json

cls cls

Visualize self-attention of the [DetTok] token on the different heads of the last layer:

we are working on a notebook to better demonstrate them, please stay tuned :)

Acknowledgement ❤️

This project is based on DETR (paper, code), DeiT (paper, code) and timm. Thanks for their wonderful works.

Citation

If you find our paper and code useful in your research, please consider giving a star and citation 📝 :

@article{YOLOS,
  title={You Only Look at One Sequence: Rethinking Transformer in Vision through Object Detection},
  author={Fang, Yuxin and Liao, Bencheng and Wang, Xinggang and Fang, Jiemin and Qi, Jiyang and Wu, Rui and Niu, Jianwei and Liu, Wenyu},
  journal={arXiv preprint arXiv:2106.00666},
  year={2021}
}
Owner
Hust Visual Learning Team
Hust Visual Learning Team belongs to the Artificial Intelligence Research Institute in the School of EIC in HUST
Hust Visual Learning Team
AdaShare: Learning What To Share For Efficient Deep Multi-Task Learning

AdaShare: Learning What To Share For Efficient Deep Multi-Task Learning (NeurIPS 2020) Introduction AdaShare is a novel and differentiable approach fo

94 Dec 22, 2022
A Python implementation of global optimization with gaussian processes.

Bayesian Optimization Pure Python implementation of bayesian global optimization with gaussian processes. PyPI (pip): $ pip install bayesian-optimizat

fernando 6.5k Jan 02, 2023
Multi-Task Temporal Shift Attention Networks for On-Device Contactless Vitals Measurement (NeurIPS 2020)

MTTS-CAN: Multi-Task Temporal Shift Attention Networks for On-Device Contactless Vitals Measurement Paper Xin Liu, Josh Fromm, Shwetak Patel, Daniel M

Xin Liu 106 Dec 30, 2022
Multi-Anchor Active Domain Adaptation for Semantic Segmentation (ICCV 2021 Oral)

Multi-Anchor Active Domain Adaptation for Semantic Segmentation Munan Ning*, Donghuan Lu*, Dong Wei†, Cheng Bian, Chenglang Yuan, Shuang Yu, Kai Ma, Y

Munan Ning 36 Dec 07, 2022
Source code for our paper "Empathetic Response Generation with State Management"

Source code for our paper "Empathetic Response Generation with State Management" this repository is maintained by both Jun Gao and Yuhan Liu Model Ove

Yuhan Liu 3 Oct 08, 2022
Sandbox for training deep learning networks

Deep learning networks This repo is used to research convolutional networks primarily for computer vision tasks. For this purpose, the repo contains (

Oleg Sémery 2.7k Jan 01, 2023
AoT is a system for automatically generating off-target test harness by using build information.

AoT: Auto off-Target Automatically generating off-target test harness by using build information. Brought to you by the Mobile Security Team at Samsun

Samsung 10 Oct 19, 2022
Large-Scale Pre-training for Person Re-identification with Noisy Labels (LUPerson-NL)

LUPerson-NL Large-Scale Pre-training for Person Re-identification with Noisy Labels (LUPerson-NL) The repository is for our CVPR2022 paper Large-Scale

43 Dec 26, 2022
Generic image compressor for machine learning. Pytorch code for our paper "Lossy compression for lossless prediction".

Lossy Compression for Lossless Prediction Using: Training: This repostiory contains our implementation of the paper: Lossy Compression for Lossless Pr

Yann Dubois 84 Jan 02, 2023
Weakly Supervised Dense Event Captioning in Videos, i.e. generating multiple sentence descriptions for a video in a weakly-supervised manner.

WSDEC This is the official repo for our NeurIPS paper Weakly Supervised Dense Event Captioning in Videos. Description Repo directories ./: global conf

Melon(Xuguang Duan) 96 Nov 01, 2022
Bio-OFC gym implementation and Gym-Fly environment

Bio-OFC gym implementation and Gym-Fly environment This repository includes the gym compatible implementation of the Bio-OFC algorithm from the paper

Siavash Golkar 1 Nov 16, 2021
PyTorch implementation of our paper: Decoupling and Recoupling Spatiotemporal Representation for RGB-D-based Motion Recognition

Decoupling and Recoupling Spatiotemporal Representation for RGB-D-based Motion Recognition, arxiv This is a PyTorch implementation of our paper. 1. Re

DamoCV 11 Nov 19, 2022
Simple Pixelbot for Diablo 2 Resurrected written in python and opencv.

Simple Pixelbot for Diablo 2 Resurrected written in python and opencv. Obviously only use it in offline mode as it is against the TOS of Blizzard to use it in online mode!

468 Jan 03, 2023
Airborne magnetic data of the Osborne Mine and Lightning Creek sill complex, Australia

Osborne Mine, Australia - Airborne total-field magnetic anomaly This is a section of a survey acquired in 1990 by the Queensland Government, Australia

Fatiando a Terra Datasets 1 Jan 21, 2022
MAU: A Motion-Aware Unit for Video Prediction and Beyond, NeurIPS2021

MAU (NeurIPS2021) Zheng Chang, Xinfeng Zhang, Shanshe Wang, Siwei Ma, Yan Ye, Xinguang Xiang, Wen GAo. Official PyTorch Code for "MAU: A Motion-Aware

ZhengChang 20 Nov 25, 2022
Reinforcement learning for self-driving in a 3D simulation

SelfDrive_AI Reinforcement learning for self-driving in a 3D simulation (Created using UNITY-3D) 1. Requirements for the SelfDrive_AI Gym You need Pyt

Surajit Saikia 17 Dec 14, 2021
Code for the ECIR'22 paper "Evaluating the Robustness of Retrieval Pipelines with Query Variation Generators"

Query Variation Generators This repository contains the code and annotation data for the ECIR'22 paper "Evaluating the Robustness of Retrieval Pipelin

Gustavo Penha 12 Nov 20, 2022
This repo provides the base code for pytorch-lightning and weight and biases simultaneous integration.

Write your model faster with pytorch-lightning-wadb-code-backbone This repository provides the base code for pytorch-lightning and weight and biases s

9 Mar 29, 2022
Breaking the Curse of Space Explosion: Towards Efficient NAS with Curriculum Search

Breaking the Curse of Space Explosion: Towards Effcient NAS with Curriculum Search Pytorch implementation for "Breaking the Curse of Space Explosion:

guoyong 17 Jan 03, 2023
This repository contains the implementation of the paper Contrastive Instance Association for 4D Panoptic Segmentation using Sequences of 3D LiDAR Scans

Contrastive Instance Association for 4D Panoptic Segmentation using Sequences of 3D LiDAR Scans This repository contains the implementation of the pap

Photogrammetry & Robotics Bonn 40 Dec 01, 2022