End-To-End Optimization of LiDAR Beam Configuration

Overview

End-To-End Optimization of LiDAR Beam Configuration

arXiv | IEEE Xplore

This repository is the official implementation of the paper:

End-To-End Optimization of LiDAR Beam Configuration for 3D Object Detection and Localization

Niclas Vödisch, Ozan Unal, Ke Li, Luc Van Gool, and Dengxin Dai.

To appear in RA-L.

Overview of 3D object detection

If you find our work useful, please consider citing our paper:

to be added after publication

📔 Abstract

Pre-determined beam configurations of low-resolution LiDARs are task-agnostic, hence simply using can result in non-optimal performance. In this work, we propose to optimize the beam distribution for a given target task via a reinforcement learning-based learning-to-optimize (RL-L2O) framework. We design our method in an end-to-end fashion leveraging the final performance of the task to guide the search process. Due to the simplicity of our approach, our work can be integrated with any LiDAR-based application as a simple drop-in module. In this repository, we provide the code for the exemplary task of 3D object detection.

🏗️ ️ Setup

To clone this repository and all submodules run:

git clone --recurse-submodules -j8 [email protected]:vniclas/lidar_beam_selection.git

⚙️ Installation

To install this code, please follow the steps below:

  1. Create a conda environment: conda create -n beam_selection python=3.8
  2. Activate the environment: conda activate beam_selection
  3. Install dependencies: pip install -r requirements.txt
  4. Install cudatoolkit (change to the used CUDA version):
    conda install cudnn cudatoolkit=10.2
  5. Install spconv (change to the used CUDA version):
    pip install spconv-cu102
  6. Install OpenPCDet (linked as submodule):
    cd third_party/OpenPCDet && python setup.py develop && cd ../..
  7. Install Pseudo-LiDAR++ (linked as submodule):
    pip install -r third_party/Pseudo_Lidar_V2/requirements.txt
    pip install pillow==8.3.2 (avoid runtime warnings)

💾 Data Preparation

  1. Download KITTI 3D Object Detection dataset and extract the files:
    1. Left color images image_2
    2. Right color images image_3
    3. Velodyne point clouds velodyne
    4. Camera calibration matrices calib
    5. Training labels label_2
  2. Predict the depth maps:
    1. Download pretrained model (training+validation)
    2. Generate the data:
    cd third_party/Pseudo_Lidar_V2  
    python ./src/main.py -c src/configs/sdn_kitti_train.config \
    --resume PATH_TO_CHECKPOINTS/sdn_kitti_object_trainval.pth --datapath PATH_TO_KITTI/training/ \
    --data_list ./split/trainval.txt --generate_depth_map --data_tag trainval \
    --save_path PATH_TO_DATA/sdn_kitti_train_set
    Note: Please adjust the paths PATH_TO_CHECKPOINTS, PATH_TO_KITTI, and PATH_TO_DATA to match your setup.
  3. Rename training/velodyne to training/velodyne_original
  4. Symlink the KITTI folders to PCDet:
    • ln -s PATH_TO_KITTI/training third_party/OpenPCDet/data/kitti/training
    • ln -s PATH_TO_KITTI/testing third_party/OpenPCDet/data/kitti/testing

🏃 Running 3D Object Detection

  1. Adjust paths in main.py. Further available parameters are listed in rl_l2o/eps_greedy_search.py and can be added in main.py.
  2. Adjust the number of epochs of the 3D object detector in (we used 40 epochs):
  3. Adjust the training scripts of the utilized detector to match your setup, e.g., object_detection/scripts/train_pointpillar.sh.
  4. Initiate the search: python main.py
    Note: Since we keep intermediate results to easily re-use them in later iterations, running the script will create a lot of data in the output_dir specified in main.py. You might want to manually delete some folders from time to time.

🔧 Adding more Tasks

Due to the design of the RL-L2O framework, it can be used as a simple drop-in module for many LiDAR applications. To apply the search algorithm to another task, just implement a custom RewardComputer, e.g., see object_detection/compute_reward.py. Additionally, you will have to prepare a set of features for each LiDAR beam. For the KITTI 3D Object Detection dataset, we provide the features as presented in the paper in object_detection/data/features_pcl.pkl.

👩‍⚖️ License

Creative Commons License
This software is made available for non-commercial use under a Creative Commons Attribution-NonCommercial 4.0 International License. A summary of the license can be found on the Creative Commons website.

Owner
Niclas
PhD student
Niclas
Use unsupervised and supervised learning to predict stocks

AIAlpha: Multilayer neural network architecture for stock return prediction This project is meant to be an advanced implementation of stacked neural n

Vivek Palaniappan 1.5k Jan 06, 2023
A set of tools to pre-calibrate and calibrate (multi-focus) plenoptic cameras (e.g., a Raytrix R12) based on the libpleno.

COMPOTE: Calibration Of Multi-focus PlenOpTic camEra. COMPOTE is a set of tools to pre-calibrate and calibrate (multifocus) plenoptic cameras (e.g., a

ComSEE - Computers that SEE 4 May 10, 2022
Gradient representations in ReLU networks as similarity functions

Gradient representations in ReLU networks as similarity functions by Dániel Rácz and Bálint Daróczy. This repo contains the python code related to our

1 Oct 08, 2021
This is the code of "Multi-view Contrastive Graph Clustering" in NeurlPS 2021.

MCGC Description This is the code of "Multi-view Contrastive Graph Clustering" in NeurlPS 2021. Datasets Results ACM DBLP IMDB Amazon photos Amazon co

31 Nov 14, 2022
Code for the ECIR'22 paper "Evaluating the Robustness of Retrieval Pipelines with Query Variation Generators"

Query Variation Generators This repository contains the code and annotation data for the ECIR'22 paper "Evaluating the Robustness of Retrieval Pipelin

Gustavo Penha 12 Nov 20, 2022
Discerning Decision-Making Process of Deep Neural Networks with Hierarchical Voting Transformation

Configurations Change HOME_PATH in CONFIG.py as the current path Data Prepare CENSINCOME Download data Put census-income.data and census-income.test i

2 Aug 14, 2022
Fast Soft Color Segmentation

Fast Soft Color Segmentation

3 Oct 29, 2022
BaseCls BaseCls 是一个基于 MegEngine 的预训练模型库,帮助大家挑选或训练出更适合自己科研或者业务的模型结构

BaseCls BaseCls 是一个基于 MegEngine 的预训练模型库,帮助大家挑选或训练出更适合自己科研或者业务的模型结构。 文档地址:https://basecls.readthedocs.io 安装 安装环境 BaseCls 需要 Python = 3.6。 BaseCls 依赖 M

MEGVII Research 28 Dec 23, 2022
Vision transformers (ViTs) have found only limited practical use in processing images

CXV Convolutional Xformers for Vision Vision transformers (ViTs) have found only limited practical use in processing images, in spite of their state-o

Cloudwalker 23 Sep 10, 2022
This repository contains a set of codes to run (i.e., train, perform inference with, evaluate) a diarization method called EEND-vector-clustering.

EEND-vector clustering The EEND-vector clustering (End-to-End-Neural-Diarization-vector clustering) is a speaker diarization framework that integrates

45 Dec 26, 2022
A Comprehensive Empirical Study of Vision-Language Pre-trained Model for Supervised Cross-Modal Retrieval

CLIP4CMR A Comprehensive Empirical Study of Vision-Language Pre-trained Model for Supervised Cross-Modal Retrieval The original data and pre-calculate

24 Dec 26, 2022
[NeurIPS-2021] Slow Learning and Fast Inference: Efficient Graph Similarity Computation via Knowledge Distillation

Efficient Graph Similarity Computation - (EGSC) This repo contains the source code and dataset for our paper: Slow Learning and Fast Inference: Effici

24 Dec 31, 2022
Anomaly Localization in Model Gradients Under Backdoor Attacks Against Federated Learning

Federated_Learning This repo provides a federated learning framework that allows to carry out backdoor attacks under varying conditions. This is a ker

Arçelik ARGE Açık Kaynak Yazılım Organizasyonu 0 Nov 30, 2021
Autonomous Driving on Curvy Roads without Reliance on Frenet Frame: A Cartesian-based Trajectory Planning Method

C++/ROS Source Codes for "Autonomous Driving on Curvy Roads without Reliance on Frenet Frame: A Cartesian-based Trajectory Planning Method" published in IEEE Trans. Intelligent Transportation Systems

Bai Li 88 Dec 23, 2022
LoFTR:Detector-Free Local Feature Matching with Transformers CVPR 2021

LoFTR-with-train-script LoFTR:Detector-Free Local Feature Matching with Transformers CVPR 2021 (with train script --- unofficial ---). About Megadepth

Nan Xiaohu 15 Nov 04, 2022
Progressive Domain Adaptation for Object Detection

Progressive Domain Adaptation for Object Detection Implementation of our paper Progressive Domain Adaptation for Object Detection, based on pytorch-fa

96 Nov 25, 2022
Hunt down social media accounts by username across social networks

Hunt down social media accounts by username across social networks Installation | Usage | Docker Notes | Contributing Installation # clone the repo $

1 Dec 14, 2021
CAR-API: Cityscapes Attributes Recognition API

CAR-API: Cityscapes Attributes Recognition API This is the official api to download and fetch attributes annotations for Cityscapes Dataset. Content I

Kareem Metwaly 5 Dec 22, 2022
Repository features UNet inspired architecture used for segmenting lungs on chest X-Ray images

Lung Segmentation (2D) Repository features UNet inspired architecture used for segmenting lungs on chest X-Ray images. Demo See the application of the

163 Sep 21, 2022
OneFlow is a performance-centered and open-source deep learning framework.

OneFlow OneFlow is a performance-centered and open-source deep learning framework. Latest News Version 0.5.0 is out! First class support for eager exe

OneFlow 4.2k Jan 07, 2023