Torch Implementation of "Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network"

Overview

Photo-Realistic-Super-Resoluton

Torch Implementation of "Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network" [Paper]

This is a prototype implementation developed by Harry Yang.

Getting started

####Training prepare your images under a sub-folder of a root folder

t_folder=your_root_folder model_folder=your_save_folder/ th run_sr.lua 

By default it resizes the images to 96x96 as ground truth and 24x24 as input, but you can specify the size using loadSize. Note current generator network only supports 4x super-resolution. In addition, the input size must be dividable by 32 (such as 96, 128, 160, etc.).

By default it resizes the images to 96x96 as ground truth and 24x24 as input, but you can specify the size using loadSize and scale.

####Loading a saved model to train

D_path=your_saved_D_model G_path=your_saved_G_model t_folder=your_root_folder model_folder=your_save_folder/ th run_resume.lua

####Testing prepare your test images under a sub-folder of a root folder

t_folder=your_root_folder model_file=your_G_model result_path=location_to_save_results th run_test.lua

Report Issues

Contact

Citation

If you find this code useful for your research, please cite:

@misc{Johnson2015,
  author = {Yang, Harry},
  title = {super-resolution using GAN},
  year = {2016},
  publisher = {GitHub},
  journal = {GitHub repository},
  howpublished = {\url{https://github.com/leehomyc/Photo-Realistic-Super-Resoluton}},
}
Owner
Harry Yang
Harry Yang
A Pytree Module system for Deep Learning in JAX

Treex A Pytree-based Module system for Deep Learning in JAX Intuitive: Modules are simple Python objects that respect Object-Oriented semantics and sh

Cristian Garcia 216 Dec 20, 2022
Patch Rotation: A Self-Supervised Auxiliary Task for Robustness and Accuracy of Supervised Models

Patch-Rotation(PatchRot) Patch Rotation: A Self-Supervised Auxiliary Task for Robustness and Accuracy of Supervised Models Submitted to Neurips2021 To

4 Jul 12, 2021
AdelaiDepth is an open source toolbox for monocular depth prediction.

AdelaiDepth is an open source toolbox for monocular depth prediction.

Adelaide Intelligent Machines (AIM) Group 743 Jan 01, 2023
An AFL implementation with UnTracer (our coverage-guided tracer)

UnTracer-AFL This repository contains an implementation of our prototype coverage-guided tracing framework UnTracer in the popular coverage-guided fuz

113 Dec 17, 2022
Predict stock movement with Machine Learning and Deep Learning algorithms

Project Overview Stock market movement prediction using LSTM Deep Neural Networks and machine learning algorithms Software and Library Requirements Th

Naz Delam 46 Sep 13, 2022
A PyTorch implementation for our paper "Dual Contrastive Learning: Text Classification via Label-Aware Data Augmentation".

Dual-Contrastive-Learning A PyTorch implementation for our paper "Dual Contrastive Learning: Text Classification via Label-Aware Data Augmentation". Y

hoshi-hiyouga 85 Dec 26, 2022
Code for the paper "MASTER: Multi-Aspect Non-local Network for Scene Text Recognition" (Pattern Recognition 2021)

MASTER-PyTorch PyTorch reimplementation of "MASTER: Multi-Aspect Non-local Network for Scene Text Recognition" (Pattern Recognition 2021). This projec

Wenwen Yu 255 Dec 29, 2022
Efficient 3D human pose estimation in video using 2D keypoint trajectories

3D human pose estimation in video with temporal convolutions and semi-supervised training This is the implementation of the approach described in the

Meta Research 3.1k Dec 29, 2022
Unofficial PyTorch implementation of TokenLearner by Google AI

tokenlearner-pytorch Unofficial PyTorch implementation of TokenLearner by Ryoo et al. from Google AI (abs, pdf) Installation You can install TokenLear

Rishabh Anand 46 Dec 20, 2022
Main Results on ImageNet with Pretrained Models

This repository contains Pytorch evaluation code, training code and pretrained models for the following projects: SPACH (A Battle of Network Structure

Microsoft 151 Dec 14, 2022
Dimension Reduced Turbulent Flow Data From Deep Vector Quantizers

Dimension Reduced Turbulent Flow Data From Deep Vector Quantizers This is an implementation of A Physics-Informed Vector Quantized Autoencoder for Dat

DreamSoul 3 Sep 12, 2022
Prior-Guided Multi-View 3D Head Reconstruction

Prior-Guided Head MVS This repository includes some reconstruction results of our IEEE TMM 2021 paper, Prior-Guided Multi-View 3D Head Reconstruction.

11 Aug 17, 2022
ObjectDetNet is an easy, flexible, open-source object detection framework

Getting started with the ObjectDetNet ObjectDetNet is an easy, flexible, open-source object detection framework which allows you to easily train, resu

5 Aug 25, 2020
Skyformer: Remodel Self-Attention with Gaussian Kernel and Nystr\"om Method (NeurIPS 2021)

Skyformer This repository is the official implementation of Skyformer: Remodel Self-Attention with Gaussian Kernel and Nystr"om Method (NeurIPS 2021).

Qi Zeng 46 Sep 20, 2022
Tensorflow implementation of our method: "Triangle Graph Interest Network for Click-through Rate Prediction".

TGIN Tensorflow implementation of our method: "Triangle Graph Interest Network for Click-through Rate Prediction". Files in the folder dataset/ electr

Alibaba 21 Dec 21, 2022
Hierarchical Metadata-Aware Document Categorization under Weak Supervision (WSDM'21)

Hierarchical Metadata-Aware Document Categorization under Weak Supervision This project provides a weakly supervised framework for hierarchical metada

Yu Zhang 53 Sep 17, 2022
Repo for the ACMMM20 submission: "Personalized breath based biometric authentication with wearable multimodality".

personalized-breath Repo for the ACMMM20 submission: "Personalized breath based biometric authentication with wearable multimodality". Guideline To ex

Manh-Ha Bui 2 Nov 15, 2021
Pytorch implementation of our method for regularizing nerual radiance fields for few-shot neural volume rendering.

InfoNeRF: Ray Entropy Minimization for Few-Shot Neural Volume Rendering Pytorch implementation of our method for regularizing nerual radiance fields f

106 Jan 06, 2023
Official Implementation of "Transformers Can Do Bayesian Inference"

Official Code for the Paper "Transformers Can Do Bayesian Inference" We train Transformers to do Bayesian Prediction on novel datasets for a large var

AutoML-Freiburg-Hannover 103 Dec 25, 2022
PyTorch Kafka Dataset: A definition of a dataset to get training data from Kafka.

PyTorch Kafka Dataset: A definition of a dataset to get training data from Kafka.

ERTIS Research Group 7 Aug 01, 2022