A PyTorch implementation of "DGC-Net: Dense Geometric Correspondence Network"

Overview

DGC-Net: Dense Geometric Correspondence Network

This is a PyTorch implementation of our work "DGC-Net: Dense Geometric Correspondence Network"

TL;DR A CNN-based approach to obtain dense pixel correspondences between two views.

License

Shield: CC BY-NC-SA 4.0

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, available only for non-commercial use.

CC BY-NC-SA 4.0

Installation

  • create and activate conda environment with Python 3.x
conda create -n my_fancy_env python=3.7
source activate my_fancy_env
  • install Pytorch v1.0.0 and torchvision library
pip install torch torchvision
  • install all dependencies by running the following command:
pip install -r requirements.txt

Getting started

  • eval.py demonstrates the results on the HPatches dataset To be able to run eval.py script:

    • Download an archive with pre-trained models click and extract it to the project folder
    • Download HPatches dataset (Full image sequences). The dataset is available here at the end of the page
    • Run the following command:
    python eval.py --image-data-path /path/to/hpatches-geometry
    
  • train.py is a script to train DGC-Net/DGCM-Net model from scratch. To run this script, please follow the next procedure:

    python train.py --image-data-path /path/to/TokyoTimeMachine
    

Performance on HPatches dataset

Method / HPatches ID Viewpoint 1 Viewpoint 2 Viewpoint 3 Viewpoint 4 Viewpoint 5
PWC-Net 4.43 11.44 15.47 20.17 28.30
GM best model 9.59 18.55 21.15 27.83 35.19
DGC-Net (paper) 1.55 5.53 8.98 11.66 16.70
DGCM-Net (paper) 2.97 6.85 9.95 12.87 19.13
DGC-Net (repo) 1.74 5.88 9.07 12.14 16.50
DGCM-Net (repo) 2.33 5.62 9.55 11.59 16.48

Note: There is a difference in numbers presented in the original paper and obtained by the models of this repo. It might be related to the fact that both models (DGC-Net and DGCM-Net) have been trained using Pytorch v0.3.

More qualitative results are presented on the project page

How to cite

If you use this software in your own research, please cite our publication:

@inproceedings{Melekhov+Tiulpin+Sattler+Pollefeys+Rahtu+Kannala:2018,
      title = {{DGC-Net}: Dense geometric correspondence network},
      author = {Melekhov, Iaroslav and Tiulpin, Aleksei and 
               Sattler, Torsten, and 
               Pollefeys, Marc and 
               Rahtu, Esa and Kannala, Juho},
       year = {2019},
       booktitle = {Proceedings of the IEEE Winter Conference on 
                    Applications of Computer Vision (WACV)}
}
Learning Logic Rules for Document-Level Relation Extraction

LogiRE Learning Logic Rules for Document-Level Relation Extraction We propose to introduce logic rules to tackle the challenges of doc-level RE. Equip

41 Dec 26, 2022
Discerning Decision-Making Process of Deep Neural Networks with Hierarchical Voting Transformation

Configurations Change HOME_PATH in CONFIG.py as the current path Data Prepare CENSINCOME Download data Put census-income.data and census-income.test i

2 Aug 14, 2022
Fuzzing tool (TFuzz): a fuzzing tool based on program transformation

T-Fuzz T-Fuzz consists of 2 components: Fuzzing tool (TFuzz): a fuzzing tool based on program transformation Crash Analyzer (CrashAnalyzer): a tool th

HexHive 244 Nov 09, 2022
BiSeNet based on pytorch

BiSeNet BiSeNet based on pytorch 0.4.1 and python 3.6 Dataset Download CamVid dataset from Google Drive or Baidu Yun(6xw4). Pretrained model Download

367 Dec 26, 2022
An executor that loads ONNX models and embeds documents using the ONNX runtime.

ONNXEncoder An executor that loads ONNX models and embeds documents using the ONNX runtime. Usage via Docker image (recommended) from jina import Flow

Jina AI 2 Mar 15, 2022
Implementation of paper: "Image Super-Resolution Using Dense Skip Connections" in PyTorch

SRDenseNet-pytorch Implementation of paper: "Image Super-Resolution Using Dense Skip Connections" in PyTorch (http://openaccess.thecvf.com/content_ICC

wxy 114 Nov 26, 2022
code and data for paper "GIANT: Scalable Creation of a Web-scale Ontology"

GIANT Code and data for paper "GIANT: Scalable Creation of a Web-scale Ontology" https://arxiv.org/pdf/2004.02118.pdf Please cite our paper if this pr

Excalibur 39 Dec 29, 2022
Deep learning with dynamic computation graphs in TensorFlow

TensorFlow Fold TensorFlow Fold is a library for creating TensorFlow models that consume structured data, where the structure of the computation graph

1.8k Dec 28, 2022
Speedy Implementation of Instance-based Learning (IBL) agents in Python

A Python library to create single or multi Instance-based Learning (IBL) agents that are built based on Instance Based Learning Theory (IBLT) 1 Instal

0 Nov 18, 2021
Lightweight Face Image Quality Assessment

LightQNet This is a demo code of training and testing [LightQNet] using Tensorflow. Uncertainty Losses: IDQ loss PCNet loss Uncertainty Networks: Mobi

Kaen 5 Nov 18, 2022
Example repository for custom C++/CUDA operators for TorchScript

Custom TorchScript Operators Example This repository contains examples for writing, compiling and using custom TorchScript operators. See here for the

106 Dec 14, 2022
In this tutorial, you will perform inference across 10 well-known pre-trained object detectors and fine-tune on a custom dataset. Design and train your own object detector.

Object Detection Object detection is a computer vision task for locating instances of predefined objects in images or videos. In this tutorial, you wi

Ibrahim Sobh 62 Dec 25, 2022
Pytorch implementation of Distributed Proximal Policy Optimization: https://arxiv.org/abs/1707.02286

Pytorch-DPPO Pytorch implementation of Distributed Proximal Policy Optimization: https://arxiv.org/abs/1707.02286 Using PPO with clip loss (from https

Alexis David Jacq 163 Dec 26, 2022
MinHash, LSH, LSH Forest, Weighted MinHash, HyperLogLog, HyperLogLog++, LSH Ensemble

datasketch: Big Data Looks Small datasketch gives you probabilistic data structures that can process and search very large amount of data super fast,

Eric Zhu 1.9k Jan 07, 2023
Code for Temporally Abstract Partial Models

Code for Temporally Abstract Partial Models Accompanies the code for the experimental section of the paper: Temporally Abstract Partial Models, Khetar

DeepMind 19 Jul 13, 2022
"MST++: Multi-stage Spectral-wise Transformer for Efficient Spectral Reconstruction" (CVPRW 2022) & (Winner of NTIRE 2022 Challenge on Spectral Reconstruction from RGB)

MST++: Multi-stage Spectral-wise Transformer for Efficient Spectral Reconstruction (CVPRW 2022) Yuanhao Cai, Jing Lin, Zudi Lin, Haoqian Wang, Yulun Z

Yuanhao Cai 274 Jan 05, 2023
Compartmental epidemic model to assess undocumented infections: applications to SARS-CoV-2 epidemics in Brazil - Datasets and Codes

Compartmental epidemic model to assess undocumented infections: applications to SARS-CoV-2 epidemics in Brazil - Datasets and Codes The codes for simu

1 Jan 12, 2022
GNN-based Recommendation Benchma

GRecX A Fair Benchmark for GNN-based Recommendation Preliminary Comparison DiffNet-Yelp dataset (featureless) Algo 73 Oct 17, 2022

Drslmarkov - Distributionally Robust Structure Learning for Discrete Pairwise Markov Networks

Distributionally Robust Structure Learning for Discrete Pairwise Markov Networks

1 Nov 24, 2022
PED: DETR for Crowd Pedestrian Detection

PED: DETR for Crowd Pedestrian Detection Code for PED: DETR For (Crowd) Pedestrian Detection Paper PED: DETR for Crowd Pedestrian Detection Installati

36 Sep 13, 2022