Tensorflow port of a full NetVLAD network

Overview

netvlad_tf

The main intention of this repo is deployment of a full NetVLAD network, which was originally implemented in Matlab, in Python. We provide the weights corresponding to the best model as TensorFlow checkpoint. The repository also contains code that can be used to import other models that were trained in Matlab, as well as tests to make sure that Python produces similar results as Matlab.

We might or might not port the training code to Python/TensorFlow in the future. See GitHub issues.

For your convenience, here is the BibTeX of NetVLAD:

@InProceedings{Arandjelovic16,
  author       = "Arandjelovi\'c, R. and Gronat, P. and Torii, A. and Pajdla, T. and Sivic, J.",
  title        = "{NetVLAD}: {CNN} architecture for weakly supervised place recognition",
  booktitle    = "IEEE Conference on Computer Vision and Pattern Recognition",
  year         = "2016",
}

This TensorFlow port has been written at the Robotics and Perception Group, University of Zurich and ETH Zurich.

Citation

If you use this code in an academic context, please cite the following ICRA'18 publication:

T. Cieslewski, S. Choudhary, D. Scaramuzza: Data-Efficient Decentralized Visual SLAM IEEE International Conference on Robotics and Automation (ICRA), 2018.

Deploying the default model

Download the checkpoint here(1.1 GB). Extract the zip and move its contents to the checkpoints folder of the repo.

Add the python folder to $PYTHONPATH. Alternatively, ROS users can simply clone this repository into the src folder of a catkin workspace.

Python dependencies, which can all be downloaded with pip are:

numpy
tensorflow-gpu

matplotlib (tests only)
opencv-python (tests only)
scipy (model importing only)

The default network can now be deployed as follows:

import cv2
import numpy as np
import tensorflow as tf

import netvlad_tf.net_from_mat as nfm
import netvlad_tf.nets as nets

tf.reset_default_graph()

image_batch = tf.placeholder(
        dtype=tf.float32, shape=[None, None, None, 3])

net_out = nets.vgg16NetvladPca(image_batch)
saver = tf.train.Saver()

sess = tf.Session()
saver.restore(sess, nets.defaultCheckpoint())

inim = cv2.imread(nfm.exampleImgPath())
inim = cv2.cvtColor(inim, cv2.COLOR_BGR2RGB)

batch = np.expand_dims(inim, axis=0)
result = sess.run(net_out, feed_dict={image_batch: batch})

A test to make sure that you get the correct output

To verify that you get the correct output, download this mat (83MB) and put it into the matlab folder. Then, you can run tests/test_nets.py: if it passes, you get the same output as the Matlab implementation for the example image. Note: An issue has been reported where some versions of Matlab and Python load images differently.

Importing other models trained with Matlab

Assuming you have a .mat file with your model:

  1. Run it through matlab/net_class2struct. This converts all serialized classes to serialized structs and is necessary for Python to be able to read all data fields. Note that Matlab needs access to the corresponding class definitions, so you probably need to have NetVLAD set up in Matlab.
  2. Make sure it runs through net_from_mat.netFromMat(). You might need to adapt some of the code there if you use a model that differs from the default one. It is helpful to use the Matlab variable inspector for debugging here.
  3. Adapt and run tests/test_net_from_mat.py. This helps you to ensure that all intermediate layers produce reasonably similar results.
  4. See mat_to_checkpoint.py for how to convert a mat file to a checkpoint. Once you have the checkpoint, you can define the network from scratch (compare to nets.vgg16NetvladPca()). Now, if all variables have been named consistently, you have a pure TensorFlow version of your NetVLAD network model. See tests/test_nets.py for a test that also verifies this implementation.

Performance test on KITTI 00

See matlab/kitti_pr.m and tests/test_kitti.py for further testing which ensures that place recognition performance is consistent between the Matlab and Python implementations. This test requires the grayscale odometry data of KITTI to be linked in the main folder of the repo.

kitti

Owner
Robotics and Perception Group
Robotics and Perception Group
PyTorch implemention of ICCV'21 paper SGPA: Structure-Guided Prior Adaptation for Category-Level 6D Object Pose Estimation

SGPA: Structure-Guided Prior Adaptation for Category-Level 6D Object Pose Estimation This is the PyTorch implemention of ICCV'21 paper SGPA: Structure

Chen Kai 24 Dec 05, 2022
Human head pose estimation using Keras over TensorFlow.

RealHePoNet: a robust single-stage ConvNet for head pose estimation in the wild.

Rafael Berral Soler 71 Jan 05, 2023
Reference code for the paper CAMS: Color-Aware Multi-Style Transfer.

CAMS: Color-Aware Multi-Style Transfer Mahmoud Afifi1, Abdullah Abuolaim*1, Mostafa Hussien*2, Marcus A. Brubaker1, Michael S. Brown1 1York University

Mahmoud Afifi 36 Dec 04, 2022
Video Autoencoder: self-supervised disentanglement of 3D structure and motion

Video Autoencoder: self-supervised disentanglement of 3D structure and motion This repository contains the code (in PyTorch) for the model introduced

157 Dec 22, 2022
GANimation: Anatomically-aware Facial Animation from a Single Image (ECCV'18 Oral) [PyTorch]

GANimation: Anatomically-aware Facial Animation from a Single Image [Project] [Paper] Official implementation of GANimation. In this work we introduce

Albert Pumarola 1.8k Dec 28, 2022
Starter Code for VALUE benchmark

StarterCode for VALUE Benchmark This is the starter code for VALUE Benchmark [website], [paper]. This repository currently supports all baseline model

VALUE Benchmark 73 Dec 09, 2022
[NeurIPS 2021] “Improving Contrastive Learning on Imbalanced Data via Open-World Sampling”,

Improving Contrastive Learning on Imbalanced Data via Open-World Sampling Introduction Contrastive learning approaches have achieved great success in

VITA 24 Dec 17, 2022
Xview3 solution - XView3 challenge, 2nd place solution

Xview3, 2nd place solution https://iuu.xview.us/ test split aggregate score publ

Selim Seferbekov 24 Nov 23, 2022
Unofficial PyTorch implementation of MobileViT based on paper "MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer".

MobileViT RegNet Unofficial PyTorch implementation of MobileViT based on paper MOBILEVIT: LIGHT-WEIGHT, GENERAL-PURPOSE, AND MOBILE-FRIENDLY VISION TR

Hong-Jia Chen 91 Dec 02, 2022
Pytorch implementation of DeepMind's differentiable neural computer paper.

DNC pytorch This is a Pytorch implementation of DeepMind's Differentiable Neural Computer (DNC) architecture introduced in their recent Nature paper:

Yuanpu Xie 91 Nov 21, 2022
Supplemental learning materials for "Fourier Feature Networks and Neural Volume Rendering"

Fourier Feature Networks and Neural Volume Rendering This repository is a companion to a lecture given at the University of Cambridge Engineering Depa

Matthew A Johnson 133 Dec 26, 2022
CAST: Character labeling in Animation using Self-supervision by Tracking

CAST: Character labeling in Animation using Self-supervision by Tracking (Published as a conference paper at EuroGraphics 2022) Note: The CAST paper c

15 Nov 18, 2022
Pytorch implementation of our paper under review -- 1xN Pattern for Pruning Convolutional Neural Networks

1xN Pattern for Pruning Convolutional Neural Networks (paper) . This is Pytorch re-implementation of "1xN Pattern for Pruning Convolutional Neural Net

Mingbao Lin (林明宝) 29 Nov 29, 2022
TalkingHead-1KH is a talking-head dataset consisting of YouTube videos

TalkingHead-1KH Dataset TalkingHead-1KH is a talking-head dataset consisting of YouTube videos, originally created as a benchmark for face-vid2vid: On

173 Dec 29, 2022
Turi Create simplifies the development of custom machine learning models.

Quick Links: Installation | Documentation | WWDC 2019 | WWDC 2018 Turi Create Check out our talks at WWDC 2019 and at WWDC 2018! Turi Create simplifie

Apple 10.9k Jan 01, 2023
fastgradio is a python library to quickly build and share gradio interfaces of your trained fastai models.

fastgradio is a python library to quickly build and share gradio interfaces of your trained fastai models.

Ali Abdalla 34 Jan 05, 2023
A simple version for graphfpn

GraphFPN: Graph Feature Pyramid Network for Object Detection Download graph-FPN-main.zip For training , run: python train.py For test with Graph_fpn

WorldGame 67 Dec 25, 2022
A simple code to perform canny edge contrast detection on images.

CECED-Canny-Edge-Contrast-Enhanced-Detection A simple code to perform canny edge contrast detection on images. A simple code to process images using c

Happy N. Monday 3 Feb 15, 2022
Pytorch implementation of the paper "Class-Balanced Loss Based on Effective Number of Samples"

Class-balanced-loss-pytorch Pytorch implementation of the paper Class-Balanced Loss Based on Effective Number of Samples presented at CVPR'19. Yin Cui

Vandit Jain 697 Dec 29, 2022
Source code related to the article submitted to the International Conference on Computational Science ICCS 2022 in London

POTHER: Patch-Voted Deep Learning-based Chest X-ray Bias Analysis for COVID-19 Detection Source code related to the article submitted to the Internati

Tomasz Szczepański 1 Apr 29, 2022