Tidy interface to polars

Overview

tidypolars

PyPI Latest Release

tidypolars is a data frame library built on top of the blazingly fast polars library that gives access to methods and functions familiar to R tidyverse users.

Installation

$ pip3 install tidypolars

General syntax

tidypolars methods are designed to work like tidyverse functions:

import tidypolars as tp
from tidypolars import col, desc

df = tp.Tibble(x = range(3), y = range(3, 6), z = ['a', 'a', 'b'])

(
    df
    .select('x', 'y', 'z')
    .filter(col('x') < 4, col('y') > 1)
    .arrange(desc('z'), 'x')
    .mutate(double_x = col('x') * 2,
            x_plus_y = col('x') + col('y'))
)
┌─────┬─────┬─────┬──────────┬──────────┐
│ xyzdouble_xx_plus_y │
│ ---------------      │
│ i64i64stri64i64      │
╞═════╪═════╪═════╪══════════╪══════════╡
│ 25b47        │
├╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌┤
│ 03a03        │
├╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌┤
│ 14a25        │
└─────┴─────┴─────┴──────────┴──────────┘

The key difference from R is that column names must be wrapped in col() in the following methods:

  • .filter()
  • .mutate()
  • .summarize()

The general idea - when doing calculations on a column you need to wrap it in col(). When doing simple column selections (like in .select()) you can pass the column names as strings.

Group by syntax

Methods operate by group by calling the by arg.

  • A single column can be passed with by = 'z'
  • Multiple columns can be passed with by = ['y', 'z']
(
    df
    .summarize(avg_x = tp.mean(col('x')),
               by = 'z')
)
┌─────┬───────┐
│ zavg_x │
│ ------   │
│ strf64   │
╞═════╪═══════╡
│ a0.5   │
├╌╌╌╌╌┼╌╌╌╌╌╌╌┤
│ b2     │
└─────┴───────┘

Selecting/dropping columns

tidyselect functions can be mixed with normal selection when selecting columns:

df = tp.Tibble(x1 = range(3), x2 = range(3), y = range(3), z = range(3))

df.select(tp.starts_with('x'), 'z')
┌─────┬─────┬─────┐
│ x1x2z   │
│ --------- │
│ i64i64i64 │
╞═════╪═════╪═════╡
│ 000   │
├╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌┤
│ 111   │
├╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌┤
│ 222   │
└─────┴─────┴─────┘

To drop columns use the .drop() method:

df.drop(tp.starts_with('x'), 'z')
┌─────┐
│ y   │
│ --- │
│ i64 │
╞═════╡
│ 0   │
├╌╌╌╌╌┤
│ 1   │
├╌╌╌╌╌┤
│ 2   │
└─────┘

Converting to/from pandas data frames

If you need to use a package that requires pandas data frames, you can convert from a tidypolars Tibble to a pandas DataFrame.

To do this you'll first need to install pyarrow:

pip3 install pyarrow

To convert to a pandas DataFrame:

df = df.to_pandas()

To convert from a pandas DataFrame to a tidypolars Tibble:

df = tp.from_pandas(df)

Speed Comparisons

A few notes:

  • Comparing times from separate functions typically isn't very useful. For example - the .summarize() tests were performed on a different dataset from .pivot_wider().
  • All tests are run 5 times. The times shown are the median of those 5 runs.
  • All timings are in milliseconds.
  • All tests can be found in the source code here.
  • FAQ - Why are some tidypolars functions faster than their polars counterpart?
    • Short answer - they're not! After all they're just using polars in the background.
    • Long answer - All python functions have some slight natural variation in their execution time. By chance the tidypolars runs were slightly shorter on those specific functions on this iteration of the tests. However one goal of these tests is to show that the "time cost" of translating syntax to polars is very negligible to the user (especially on medium-to-large datasets).
  • Lastly I'd like to mention that these tests were not rigorously created to cover all angles equally. They are just meant to be used as general insight into the performance of these packages.
┌─────────────┬────────────┬─────────┬──────────┐
│ func_testedtidypolarspolarspandas   │
│ ------------      │
│ strf64f64f64      │
╞═════════════╪════════════╪═════════╪══════════╡
│ arrange190.345169.478500.112  │
├╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌┤
│ case_when87.34879.427152.623  │
├╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌┤
│ distinct16.88816.28228.725   │
├╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌┤
│ filter29.78929.91231.397  │
├╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌┤
│ full_join236.784231.2831042.689 │
├╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌┤
│ inner_join49.7147.563630.98   │
├╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌┤
│ left_join113.7921151100.607 │
├╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌┤
│ mutate7.9797.408117.283  │
├╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌┤
│ pivot_wider42.76439.93949.048   │
├╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌┤
│ summarize59.43458.011453.707  │
└─────────────┴────────────┴─────────┴──────────┘

Contributing

Interested in contributing? Check out the contributing guidelines. Please note that this project is released with a Code of Conduct. By contributing to this project, you agree to abide by its terms.

Comments
  • `drop` with error `RuntimeError: Any(NotFound(

    `drop` with error `RuntimeError: Any(NotFound("^x.*$"))`

    import sys
    import tidypolars as tp
    sys.version
    # '3.9.7 (default, Sep 16 2021, 13:09:58) \n[GCC 7.5.0]'
    tp.__version__
    # '0.2.1'
    ## error
    df = tp.Tibble(x1 = range(3), x2 = range(3), y=range(3), z = range(3))
    df.drop([tp.starts_with('x'), 'z'])
    df.drop()
    `
    ---------------------------------------------------------------------------
    RuntimeError                              Traceback (most recent call last)
    /tmp/ipykernel_12815/866601321.py in <module>
    ----> 1 df.drop(tp.starts_with('x'))
    
    ~/miniconda3/envs/py39/lib/python3.9/site-packages/polars/eager/frame.py in drop(self, name)
       2253             return df
       2254 
    -> 2255         return wrap_df(self._df.drop(name))
       2256 
       2257     def drop_in_place(self, name: str) -> "pl.Series":
    
    RuntimeError: Any(NotFound("^x.*$"))
    `
    
    
    
    opened by ztsweet 9
  • `AttributeError: arrange not found`

    `AttributeError: arrange not found`

    import tidypolars as tp
    from tidypolars import col, desc
    import sys
    sys.version
    # '3.10.0 | packaged by conda-forge | (default, Oct 12 2021, 21:24:52) [GCC 9.4.0]'
    tp.__version__
    # '0.2.1'
    df = tp.Tibble({'x': ['a', 'a', 'b'], 'y': range(3)})
    df.arrange('x', 'y')
    `
    ---------------------------------------------------------------------------
    RuntimeError                              Traceback (most recent call last)
    ~/miniconda3/envs/py310/lib/python3.10/site-packages/polars/eager/frame.py in __getattr__(self, item)
        882         try:
    --> 883             return pl.eager.series.wrap_s(self._df.column(item))
        884         except RuntimeError:
    
    RuntimeError: Any(NotFound("arrange"))
    
    During handling of the above exception, another exception occurred:
    
    AttributeError                            Traceback (most recent call last)
    /tmp/ipykernel_21110/1194586334.py in <module>
    ----> 1 df.arrange('x', 'y')
    
    ~/miniconda3/envs/py310/lib/python3.10/site-packages/polars/eager/frame.py in __getattr__(self, item)
        883             return pl.eager.series.wrap_s(self._df.column(item))
        884         except RuntimeError:
    --> 885             raise AttributeError(f"{item} not found")
        886 
        887     def __iter__(self) -> Iterator[Any]:
    
    AttributeError: arrange not found
    `
    
    bug 
    opened by ztsweet 6
  • Missing attributes when chaining

    Missing attributes when chaining

    Hi Mark, thanks for putting this package together. It looks very cool.

    I'm having a tough time getting the motivating examples to work, though. For example, the following triggers an error:

    import tidypolars as tp
    from tidypolars import col, desc
    
    df = tp.Tibble(x = range(3), y = range(3, 6), z = ['a', 'a', 'b'])
    
    df.filter(col('x') < 2).arrange(desc('z'), 'x')
    
    ---------------------------------------------------------------------------
    AttributeError                            Traceback (most recent call last)
    Untitled-1 in <cell line: 1>()
    ----> <a href='untitled:Untitled-1?line=7'>8</a> df.filter(col('x') < 2).arrange(desc('z'), 'x')
    
    AttributeError: 'DataFrame' object has no attribute 'arrange'
    

    What's genuinely odd about the above is that arrange works on its own and when it comes before filter.

    # All of these work as expected
    df.filter(col('x') < 2)
    df.arrange(desc('z'), 'x')
    df.arrange(desc('z'), 'x').filter(col('x') < 2)
    

    A seemingly related issue is that I can't pass two arguments to filter when it follows arrange (or other verbs likeselect for that matter).

    df.filter(col('x') < 2, col('y')>3) ## works
    df.arrange(desc('z'), 'x').filter(col('x') < 2, col('y')>3) ## errors with "filter() takes 2 positional arguments but 3 were given"
    

    Any ideas?

    I'm on Python 3.9.2 installed via Homebrew on a 2019 Macbook (so regular Intel chip) and running the latest version of tidypolars (0.2.15).

    bug 
    opened by grantmcdermott 5
  • Is it possible to have dplyr's `group_by` + `mutate` behavior?

    Is it possible to have dplyr's `group_by` + `mutate` behavior?

    First of all, I really like this package and I've started to use it a lot in my work. As a Pythonista whose first language is R, I really enjoy tidypolars.

    In R, we can do something like the following

    library(dplyr)
    data(iris)
    
    iris %>%
      group_by(Species) %>%
      mutate(
        result = Petal.Width - mean(Petal.Width)
      )
    

    Since we have a group_by(Species) call, dplyr will subtract the mean that corresponds to each group in the mutate() operation (not the mean across all observations from all species).

    As far as I understand, this is still not possible with tidypolars since we don't have a group_by function that behaves in a similar way to the one in dplyr. So my questions are

    • Is it possible to have this behavior in tidypolars now?
      • If yes, how?
      • If not, is it going to be possible? I could volunteer to try to implement it. I'm not familiar with the existing codebase, but I suspect that Python eager evaluation of function arguments is what makes it harder to have such a feature?

    Again, thanks for the fantastic library!

    opened by tomicapretto 5
  • idiomatic way to add list as column

    idiomatic way to add list as column

    Forgive what's probably a dumb question, but is there a way to get .mutate to return the same object as the .bind_cols line?

    import tidypolars as tp
    
    tb = tp.Tibble({'a': [1, 2, 3]})
    x = [4, 5, 6]
    # gives desired output 
    tb.bind_cols(tp.Tibble({'b': x}))
    # gives error: ValueError: could not convert value '[4, 5, 6]' as a Literal
    tb.mutate(b = x)
    
    feature 
    opened by eutwt 4
  • purrr functions!?

    purrr functions!?

    I noticed that in tidytable, you have purrr functions like map.(), but not in tidypolars.

    Using for loops + lambda functions are just not desirable for collaborative coding / code readability/comprehension. In Python, even if there is a bit of sacrifice in performance, if it allows better code readability, it would be really nice to have.

    Would something like map.() be in the scope of this repo?

    feature 
    opened by exsell-jc 3
  • ```ValueError``` with ```filter```

    ```ValueError``` with ```filter```

    When I chain filter expressions with | (error message said to use | and not or), I receive a ValueError message:

    tp.Tibble(chr_col = tp.Series(['this is a test 1', 'this is a test 2', 'this is a test 3']))\
        .filter(col('chr_col') == 'this is a test 1' |
                col('chr_col') == 'this is a test 2')
    
    ValueError: Since Expr are lazy, the truthiness of an Expr is ambiguous. 
    Hint: use '&' or '|' to chain Expr together, not and/or.
    

    It works fine if I do one or the other:

    tp.Tibble(chr_col = tp.Series(['this is a test 1', 'this is a test 2', 'this is a test 3']))\
        .filter(# col('chr_col') == 'this is a test 1' |
                col('chr_col') == 'this is a test 2')
    
    # chr_col
    #   --
    #   str
    # "this is a test 2"
    
    tp.Tibble(chr_col = tp.Series(['this is a test 1', 'this is a test 2', 'this is a test 3']))\
        .filter(col('chr_col') == 'this is a test 1' # |
                # col('chr_col') == 'this is a test 2'
                )
    
    # chr_col
    #   --
    #   str
    # "this is a test 1"
    
    opened by alexandro-ag 3
  • ```as_date``` with ```RuntimeError: please define a fmt```

    ```as_date``` with ```RuntimeError: please define a fmt```

    Good afternoon,

    I think I found an issue with the as_date method. In the example per the documentation, the following succeeds:

    import tidypolars as tp
    from tidypolars import col
    
    date_df = tp.Tibble(date = ['2021-12-31']) # Year-Month-Day (%Y-%m-%d)
    date_df.mutate(date_parsed = tp.as_date(col('date'))) # Success
    

    However when parsing different formats (using the fmt argument), the date fails to parse:

    import tidypolars as tp
    from tidypolars import col
    
    date_df = tp.Tibble(date = ['12/31/2021']) # Month/Day/Year (%m/%d/%Y)
    date_df.mutate(date_parsed = tp.as_date(col('date'), fmt='%m/%d/%Y')) # RuntimeError
    

    I also extend my appreciation for all the work on this package. I've been searching for a tidyverse implementation in python and this one knocks my expectations out of the park. Thank you.

    opened by alexandro-ag 3
  • Revisit `.rename()` syntax

    Revisit `.rename()` syntax

    Should the syntax be the same as pl.DataFrame.rename? Currently polars mimics pandas syntax. Or should it be something that attempts to mimic tidyverse syntax?

    Note: polars also has a .rename_col() with syntax df.rename_col('old', 'new').

    opened by markfairbanks 3
  • Compatibility with polars v0.14.0

    Compatibility with polars v0.14.0

    PR that caused the break: https://github.com/pola-rs/polars/pull/4309

    Old behavior that tidypolars relied on: https://github.com/pola-rs/polars/pull/2862

    feature 
    opened by markfairbanks 2
  • Basics: tp.read_csv(), df.drop(x1, x2, x3, ...), and df.colnames?

    Basics: tp.read_csv(), df.drop(x1, x2, x3, ...), and df.colnames?

    Really new to the library, but looking at the documentation did not really help with understanding.

    Problem 1

    import polars as pl
    import tidypolars as tp
    import csv
    import requests
    
    url = f'https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/data/2022/2022-05-24/Scrumqueens-data-2022-05-23.csv'
    
    df = tp.read_csv(file = url) # does not work
    df = pl.read_csv(file = url) # works??
    

    Problem 2

    df = df.drop('...1', 'Notes') # does not work
    df = df.drop('...1') # works separately
    df = df.drop('Notes') # works separately
    

    Problem 3

    df.colnames
    df.names
    df.colnames()
    df.names()
    # None of these work
    

    What am I missing, exactly?

    opened by exsell-jc 2
  • plans for adding type hints

    plans for adding type hints

    Hi, it seems that the codebase is not annotated making the discoverability of methods difficult and static code analysis not working. Any plans on adding type hints?

    feature 
    opened by mr-majkel 1
  • `write_csv()` returns `'super' object has no attribute 'to_csv'`

    `write_csv()` returns `'super' object has no attribute 'to_csv'`

    Hi, There seems to be a problem with write_csv(). I can import tidypolars and the data just fine:

    import tidypolars as tp
    
    rents = tp.read_csv("https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/data/2022/2022-07-05/rent.csv")
    

    But when I try to export the data frame as a csv file:

    rents.write_csv("rents.csv")
    

    I get an error stating 'super' object has no attribute 'to_csv'.

    The data come from the Tidytuesday repo. Python version is 3.10.8 and tidypolars is 0.2.19. I'm on macOS 13.

    bug 
    opened by alesvomacka 1
  • Calculating time

    Calculating time

    In R with lubridate, it would look like this:

    one_year_before = some_date - years(1)
    one_year_before = some_date - months(12)
    

    But in tidypolars functions list, there doesn't seem to be a years or months function: https://tidypolars.readthedocs.io/en/latest/reference.html

    feature 
    opened by exsell-jc 4
Releases(v0.2.19)
Development kit for MIT Scene Parsing Benchmark

Development Kit for MIT Scene Parsing Benchmark [NEW!] Our PyTorch implementation is released in the following repository: https://github.com/hangzhao

MIT CSAIL Computer Vision 424 Dec 01, 2022
Unofficial pytorch implementation of the paper "Dynamic High-Pass Filtering and Multi-Spectral Attention for Image Super-Resolution"

DFSA Unofficial pytorch implementation of the ICCV 2021 paper "Dynamic High-Pass Filtering and Multi-Spectral Attention for Image Super-Resolution" (p

2 Nov 15, 2021
An efficient and easy-to-use deep learning model compression framework

TinyNeuralNetwork 简体中文 TinyNeuralNetwork is an efficient and easy-to-use deep learning model compression framework, which contains features like neura

Alibaba 441 Dec 25, 2022
Implementing DeepMind's Fast Reinforcement Learning paper

Fast Reinforcement Learning This is a repo where I implement the algorithms in the paper, Fast reinforcement learning with generalized policy updates.

Marcus Chiam 6 Nov 28, 2022
A Python parser that takes the content of a text file and then reads it into variables.

Text-File-Parser A Python parser that takes the content of a text file and then reads into variables. Input.text File 1. What is your ***? 1. 18 -

Kelvin 0 Jul 26, 2021
CurriculumNet: Weakly Supervised Learning from Large-Scale Web Images

CurriculumNet Introduction This repo contains related code and models from the ECCV 2018 CurriculumNet paper. CurriculumNet is a new training strategy

156 Jul 04, 2022
Kaggle Feedback Prize - Evaluating Student Writing 15th solution

Kaggle Feedback Prize - Evaluating Student Writing 15th solution First of all, I would like to thank the excellent notebooks and discussions from http

Lingyuan Zhang 6 Mar 24, 2022
Code for PackNet: Adding Multiple Tasks to a Single Network by Iterative Pruning

PackNet: https://arxiv.org/abs/1711.05769 Pretrained models are available here: https://uofi.box.com/s/zap2p03tnst9dfisad4u0sfupc0y1fxt Datasets in Py

Arun Mallya 216 Jan 05, 2023
Project for music generation system based on object tracking and CGAN

Project for music generation system based on object tracking and CGAN The project was inspired by MIDINet: A Convolutional Generative Adversarial Netw

1 Nov 21, 2021
PaddlePaddle GAN library, including lots of interesting applications like First-Order motion transfer, wav2lip, picture repair, image editing, photo2cartoon, image style transfer, and so on.

English | 简体中文 PaddleGAN PaddleGAN provides developers with high-performance implementation of classic and SOTA Generative Adversarial Networks, and s

6.4k Jan 09, 2023
网络协议2天集训

网络协议2天集训 抓包工具安装 Wireshark wireshark下载地址 Tcpdump CentOS yum install tcpdump -y Ubuntu apt-get install tcpdump -y k8s抓包测试环境 查看虚拟网卡veth pair 查看

120 Dec 12, 2022
In this project, two programs can help you take full agvantage of time on the model training with a remote server

In this project, two programs can help you take full agvantage of time on the model training with a remote server, which can push notification to your phone about the information during model trainin

GrayLee 8 Dec 27, 2022
Attention-based Transformation from Latent Features to Point Clouds (AAAI 2022)

Attention-based Transformation from Latent Features to Point Clouds This repository contains a PyTorch implementation of the paper: Attention-based Tr

12 Nov 11, 2022
Optimal Camera Position for a Practical Application of Gaze Estimation on Edge Devices,

Optimal Camera Position for a Practical Application of Gaze Estimation on Edge Devices, Linh Van Ma, Tin Trung Tran, Moongu Jeon, ICAIIC 2022 (The 4th

Linh 11 Oct 10, 2022
The official PyTorch implementation of the paper: *Xili Dai, Xiaojun Yuan, Haigang Gong, Yi Ma. "Fully Convolutional Line Parsing." *.

F-Clip — Fully Convolutional Line Parsing This repository contains the official PyTorch implementation of the paper: *Xili Dai, Xiaojun Yuan, Haigang

Xili Dai 115 Dec 28, 2022
A simple, clean TensorFlow implementation of Generative Adversarial Networks with a focus on modeling illustrations.

IllustrationGAN A simple, clean TensorFlow implementation of Generative Adversarial Networks with a focus on modeling illustrations. Generated Images

268 Nov 27, 2022
Awesome-AI-books - Some awesome AI related books and pdfs for learning and downloading

Awesome AI books Some awesome AI related books and pdfs for downloading and learning. Preface This repo only used for learning, do not use in business

luckyzhou 1k Jan 01, 2023
L-Verse: Bidirectional Generation Between Image and Text

Far beyond learning long-range interactions of natural language, transformers are becoming the de-facto standard for many vision tasks with their power and scalabilty

Kim, Taehoon 102 Dec 21, 2022
RuDOLPH: One Hyper-Modal Transformer can be creative as DALL-E and smart as CLIP

[Paper] [Хабр] [Model Card] [Colab] [Kaggle] RuDOLPH 🦌 🎄 ☃️ One Hyper-Modal Tr

Sber AI 230 Dec 31, 2022
Code to generate datasets used in "How Useful is Self-Supervised Pretraining for Visual Tasks?"

Synthetic dataset rendering Framework for producing the synthetic datasets used in: How Useful is Self-Supervised Pretraining for Visual Tasks? Alejan

Princeton Vision & Learning Lab 21 Apr 29, 2022