MVP Benchmark for Multi-View Partial Point Cloud Completion and Registration

Overview

MVP Benchmark: Multi-View Partial Point Clouds for Completion and Registration

[NEWS]

[Timeline]

  • 2021-07-12   Submission start date
  • 2021-09-12   Public submission deadline
  • 2021-09-19   Private submission deadline
  • 2021-10-04   Technical report deadline
  • 2021-10-17   Awards at ICCV2021 Workshop

[MVP Benchmark]

Overview

This repository introduces the MVP Benchmark for partial point cloud COMPLETION and REGISTRATION, and it also includes following recent methods:

This repository is implemented in Python 3.7, PyTorch 1.5.0, CUDA 10.1 and gcc > 5.

Installation

Install Anaconda, and then use the following command:

git clone --depth=1 https://github.com/paul007pl/MVP_Benchmark.git
cd MVP_Benchmark; source setup.sh;

If your connection to conda and pip is unstable, it is recommended to manually follow the setup steps in setup.sh.

MVP Dataset

Download corresponding dataset:

Usage

For both completion and registration:

  • cd completion or cd registration

  • To train a model: run python train.py -c ./cfgs/*.yaml, e.g. python train.py -c ./cfgs/pcn.yaml

  • To test a model: run python test.py -c ./cfgs/*.yaml, e.g. python test.py -c ./cfgs/pcn.yaml

  • Config for each algorithm can be found in cfgs/.

  • run_train.sh and run_test.sh are provided for SLURM users.

  • Different partial point clouds for the same CAD Model:

  • High-quality complete point clouds:


[Citation]

If you find our code useful, please cite our paper:

@article{pan2021variational,
  title={Variational Relational Point Completion Network},
  author={Pan, Liang and Chen, Xinyi and Cai, Zhongang and Zhang, Junzhe and Zhao, Haiyu and Yi, Shuai and Liu, Ziwei},
  journal={arXiv preprint arXiv:2104.10154},
  year={2021}
}

[License]

Our code is released under Apache-2.0 License.


[Acknowledgement]

We include the following PyTorch 3rd-party libraries:
[1] CD
[2] EMD
[3] MMDetection3D

We include the following algorithms:
[1] PCN
[2] ECG
[3] VRCNet
[4] DCP
[5] DeepGMR
[6] IDAM

Data and code from COVID-19 machine learning paper

Machine learning approaches for localized lockdown, subnotification analysis and cases forecasting in São Paulo state counties during COVID-19 pandemi

Sara Malvar 4 Dec 22, 2022
PyTorch common framework to accelerate network implementation, training and validation

pytorch-framework PyTorch common framework to accelerate network implementation, training and validation. This framework is inspired by works from MML

Dongliang Cao 3 Dec 19, 2022
The code for our paper submitted to RAL/IROS 2022: OverlapTransformer: An Efficient and Rotation-Invariant Transformer Network for LiDAR-Based Place Recognition.

OverlapTransformer The code for our paper submitted to RAL/IROS 2022: OverlapTransformer: An Efficient and Rotation-Invariant Transformer Network for

HAOMO.AI 136 Jan 03, 2023
Deep ViT Features as Dense Visual Descriptors

dino-vit-features [paper] [project page] Official implementation of the paper "Deep ViT Features as Dense Visual Descriptors". We demonstrate the effe

Shir Amir 113 Dec 24, 2022
Geometry-Aware Learning of Maps for Camera Localization (CVPR2018)

Geometry-Aware Learning of Maps for Camera Localization This is the PyTorch implementation of our CVPR 2018 paper "Geometry-Aware Learning of Maps for

NVIDIA Research Projects 321 Nov 26, 2022
Clockwork Convnets for Video Semantic Segmentation

Clockwork Convnets for Video Semantic Segmentation This is the reference implementation of arxiv:1608.03609: Clockwork Convnets for Video Semantic Seg

Evan Shelhamer 141 Nov 21, 2022
Simple PyTorch implementations of Badnets on MNIST and CIFAR10.

Simple PyTorch implementations of Badnets on MNIST and CIFAR10.

Vera 75 Dec 13, 2022
[ICCV 2021] A Simple Baseline for Semi-supervised Semantic Segmentation with Strong Data Augmentation

[ICCV 2021] A Simple Baseline for Semi-supervised Semantic Segmentation with Strong Data Augmentation

CodingMan 45 Dec 12, 2022
Data and Code for ACL 2021 Paper "Inter-GPS: Interpretable Geometry Problem Solving with Formal Language and Symbolic Reasoning"

Introduction Code and data for ACL 2021 Paper "Inter-GPS: Interpretable Geometry Problem Solving with Formal Language and Symbolic Reasoning". We cons

Pan Lu 81 Dec 27, 2022
Semantic Bottleneck Scene Generation

SB-GAN Semantic Bottleneck Scene Generation Coupling the high-fidelity generation capabilities of label-conditional image synthesis methods with the f

Samaneh Azadi 41 Nov 28, 2022
Unified file system operation experience for different backend

megfile - Megvii FILE library Docs: http://megvii-research.github.io/megfile megfile provides a silky operation experience with different backends (cu

MEGVII Research 76 Dec 14, 2022
Arxiv harvester - Poor man's simple harvester for arXiv resources

Poor man's simple harvester for arXiv resources This modest Python script takes

Patrice Lopez 5 Oct 18, 2022
A Fast Knowledge Distillation Framework for Visual Recognition

FKD: A Fast Knowledge Distillation Framework for Visual Recognition Official PyTorch implementation of paper A Fast Knowledge Distillation Framework f

Zhiqiang Shen 129 Dec 24, 2022
Source code for Fathony, Sahu, Willmott, & Kolter, "Multiplicative Filter Networks", ICLR 2021.

Multiplicative Filter Networks This repository contains a PyTorch MFN implementation and code to perform & reproduce experiments from the ICLR 2021 pa

Bosch Research 66 Jan 04, 2023
Much faster than SORT(Simple Online and Realtime Tracking), a little worse than SORT

QSORT QSORT(Quick + Simple Online and Realtime Tracking) is a simple online and realtime tracking algorithm for 2D multiple object tracking in video s

Yonghye Kwon 8 Jul 27, 2022
A weakly-supervised scene graph generation codebase. The implementation of our CVPR2021 paper ``Linguistic Structures as Weak Supervision for Visual Scene Graph Generation''

README.md shall be finished soon. WSSGG 0 Overview 1 Installation 1.1 Faster-RCNN 1.2 Language Parser 1.3 GloVe Embeddings 2 Settings 2.1 VG-GT-Graph

Keren Ye 35 Nov 20, 2022
ICCV2021, Tokens-to-Token ViT: Training Vision Transformers from Scratch on ImageNet

Tokens-to-Token ViT: Training Vision Transformers from Scratch on ImageNet, ICCV 2021 Update: 2021/03/11: update our new results. Now our T2T-ViT-14 w

YITUTech 1k Dec 31, 2022
Fast Axiomatic Attribution for Neural Networks (NeurIPS*2021)

Fast Axiomatic Attribution for Neural Networks This is the official repository accompanying the NeurIPS 2021 paper: R. Hesse, S. Schaub-Meyer, and S.

Visual Inference Lab @TU Darmstadt 11 Nov 21, 2022
Codebase for arXiv preprint "NeRF++: Analyzing and Improving Neural Radiance Fields"

NeRF++ Codebase for arXiv preprint "NeRF++: Analyzing and Improving Neural Radiance Fields" Work with 360 capture of large-scale unbounded scenes. Sup

Kai Zhang 722 Dec 28, 2022
An investigation project for SISR.

SISR-Survey An investigation project for SISR. This repository is an official project of the paper "From Beginner to Master: A Survey for Deep Learnin

Juncheng Li 79 Oct 20, 2022