Source code for the ACL-IJCNLP 2021 paper entitled "T-DNA: Taming Pre-trained Language Models with N-gram Representations for Low-Resource Domain Adaptation" by Shizhe Diao et al.

Related tags

Deep LearningT-DNA
Overview

T-DNA

Source code for the ACL-IJCNLP 2021 paper entitled Taming Pre-trained Language Models with N-gram Representations for Low-Resource Domain Adaptation.

Our implementation is built on the source code from huggingface transformers.

Model

We aim to adapt a generic pretrained model with a relatively small amount of domain-specific data. We demonstrate that by explicitly incorporating the multi-granularity information of unseen and domain-specific words via the adaptation of (word based) n-grams, the performance of a generic pretrained model can be greatly improved. Specifically, we introduce a Transformer-based Domain-aware N-gram Adaptor, T-DNA, to effectively learn and incorporate the semantic representation of different combinations of words in the new domain. T-DNA is able to achieve significant improvements compared to existing methods on most tasks using limited data with lower computational costs.

The overall architechture of T-DNA is shown in the figure below. image info

Requirements

Our code works with the following environment.

  • python=3.7.9
  • pytorch=1.4.0

To install the necessary packages for the project, please run: pip install -r requirements.txt.

Quick Start (For reproducing results)

  1. To do RoBERTa+T-DNA+FT, please refer to auto_FT.sh and you can simply run CUDA_VISIBLE_DEVICES=<GPU_ID> bash auto_FT.sh and get the expected results:
09/08/2021 19:56:58 - INFO - __main__ -   ***** Test results ag *****
09/08/2021 19:56:58 - INFO - __main__ -     eval_loss = 0.4393280267715454
09/08/2021 19:56:58 - INFO - __main__ -     eval_acc_and_f1 = {'acc': 0.8889473684210526, 'f1': 0.8889374532466023, 'acc_and_f1': 0.8889424108338275}
  1. To do RoBERTa+T-DNA+TAPT, please refer to auto_TAPT.sh and you can simply run CUDA_VISIBLE_DEVICES=<GPU_ID> bash auto_TAPT.sh and get the expected results:
09/08/2021 19:47:03 - INFO - __main__ -   ***** Test results ag *****
09/08/2021 19:47:03 - INFO - __main__ -     eval_loss = 0.48006332549609637
09/08/2021 19:47:03 - INFO - __main__ -     eval_acc_and_f1 = {'acc': 0.8943421052631579, 'f1': 0.8939718422143115, 'acc_and_f1': 0.8941569737387347}
  1. Important arguments:
    • task_name: ag, amazon, citation_intent, chemprot, hyperpartisan_news, imdb, rct-20k, sciie
    • data_dir: path of processed data
    • output_dir: path of saved results

Datasets

Following Gururangan et al. (2020), we conduct our experiments on eight classification tasks from four domains including biomedical sciences, computer scie nce, news and reviews. They are:

  • ChemProt: a manually annotated chemical–protein interaction dataset extracted from 5,031 abstracts for relation classification;
  • RCT: contains approximately 200,000 abstracts from public medicine with the role of each sentence clearly identified;
  • CitationIntent: contains around 2,000 citations annotated for their function;
  • SciERC: consists of 500 scientific abstracts annotated for relation classification;
  • HyperPartisan: which contains 645 articles from Hyperpartisan news with either extreme left-wing or right-wing stand-point used for partisanship classification;
  • AGNews: consists of 127,600 categorized articles from more than 2000 news source for topic classification;
  • Amazon: consists of 145,251 reviews on Women’s and Men’s Clothing & Accessories, each representing users’ implicit feedback on items with a binary label signifying whether the majority of customers found the review helpful;
  • IMDB: 50,000 balanced positive and negative reviews from the Internet Movie Database for sentiment classification

The datasets can be downloaded from the code associated with the Don't Stop Pretraining ACL 2020 paper. Please create a folder ./data in the root directory and put the downloaded datasets into it. After downloading, please convert them to *.tsv files referring to the script convert_dont_stop_corpus.py. Note that to create a low-resource setting, we constrain the size of all datasets into thousand-level. To do so, we randomly select a subset for RCT, AG, Amazon, IMDB with the ratio 1%, 1%, 1%, 10%, respectively.

To extract n-grams for datasets, please run pmi_ngram.py with the following parameters:

  • --dataset: the path of training data file
  • --output_dir: the path of output directory

Use with your own data

In this repo, we conducted experiments on eight classification tasks as described in the paper. In addition, it supports any classification task with just a little adjustment on your dataset. Here are the instructions to conduct experiments with your own data.

Firstly, please adjust your data format as following and put your data into the corresponding path.

Task adaptive pre-training:

Input dataset (./data/):

  • train: text \t label per line
  • dev: text \t label per line

Output: it will save the trained models to results folder automatically, and print out loss.

Fine-tuning dataset:

Input dataset (./data/tapt_data/):

  • train: text \t label per line
  • dev: text \t label per line
  • test: text \t label per line

Then, please modify the configuration file at ./TDNA/config.py

  1. define the desired evaluation metric in glue_compute_metrics(), e.g.,
elif task_name == "ag":
   return {"acc_and_f1": acc_and_f1(preds, labels)}
  1. create a new processor specifying the labels, e.g.,
class agProcessor(generalProcessor):
    def get_labels(self):
        return ['1', '2', '3', '4']
  1. specify the number of labels, e.g.,
glue_tasks_num_labels = {
    "citation_intent": 6,
    "ag": 4,
    "amazon": 2,
    "chemprot": 13,
    "hyperpartisan_news": 2,
    "imdb": 2,
    "rct-20k": 5,
    "sciie": 7,
    "SST2": 2
}
  1. include the new processor into glue_processors, e.g.,
glue_processors = {
    "citation_intent": citation_intentProcessor,
    "ag": agProcessor,
    "amazon": amazonProcessor,
    "chemprot": chemprotProcessor,
    "hyperpartisan_news": hyperpartisan_newsProcessor,
    "imdb": imdbProcessor,
    "rct-20k": rct_20kProcessor,
    "sciie": sciieProcessor,
    "SST2": SST2Processor
}
  1. specify the output mode in glue_output_modes, e.g.,
glue_output_modes = {
    "citation_intent": "classification",
    "ag": "classification",
    "amazon": "classification",
    "chemprot": "classification",
    "hyperpartisan_news": "classification",
    "imdb": "classification",
    "rct-20k": "classification",
    "sciie": "classification",
    "SST2": "classification"
}

Run

For FT,

python ./examples/run_classification.py --model_name_or_path roberta-base \
--task_name <task_name> --max_seq_length 256 --per_device_train_batch_size 16 \
--learning_rate 4e-5 --num_train_epochs 3.0 --output_dir ./results/<task_name>_FT/ \
--data_dir ./data/<task_name>/ --Ngram_path ./ngram/pmi_<task_name>_ngram.txt \
--fasttext_model_path ./ngram/<task_name>.npy --overwrite_output_dir

For TAPT + FT,

python ./examples/run_language_modeling.py \
--output_dir=./models/<task_name>_TAPT/ --model_type=roberta  --overwrite_output_dir \
--model_name_or_path=roberta-base --train_data_file=./data/tapt_data/<task_name>/train.tsv \
--eval_data_file=./data/tapt_data/<task_name>/dev.tsv --mlm --line_by_line \
--Ngram_path ./ngram/pmi_<task_name>_ngram.txt --num_train_epochs 10.0 \
--fasttext_model_path ./ngram/<task_name>.npy --learning_rate 4e-5

python ./examples/run_classification.py \
--model_name_or_path ./models/<task_name>_TAPT \
--task_name <task_name> --max_seq_length 256 --per_device_train_batch_size 16 \
--learning_rate 2e-5 --num_train_epochs 5.0 --output_dir ./results/<task_name>_TAPT_FT/ \
--data_dir ./data/<task_name>/ --Ngram_path ./ngram/pmi_<task_name>_ngram.txt --overwrite_output_dir --save_steps 5000

Output:

The run_classification.py program will save the trained models to results folder automatically, and print out loss, accuracy, f1 score. In addition, you can get the prediction results in args.output_dir/test_pred_{task_name}.txt. Take test_pred_ag.txt as an example:

input   label   pred
Unions representing workers at Turner   Newall say they are 'disappointed' after talks with stricken parent firm Federal Mogul. 3       3
SPACE.com - TORONTO, Canada -- A second\team of rocketeers competing for the  #36;10 million Ansari X Prize, a contest for\privately funded suborbital space flight, has officially announced the first\launch date for its manned rocket.      4       4
...

Contact information

For help or issues using T-DNA, please submit a GitHub issue.

For personal communication related to T-DNA, please contact Shizhe Diao ([email protected]).

Citation

If you use or extend our work, please cite the following paper:

@inproceedings{DXSJSZ2021,
    title = "Taming Pre-trained Language Models with N-gram Representations for Low-Resource Domain Adaptation",
    author = "Diao, Shizhe  and
      Xu, Ruijia  and
      Su, Hongjin  and
      Jiang, Yilei  and
      Song, Yan  and
      Zhang, Tong",
    booktitle = "Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)",
    month = aug,
    year = "2021",
    address = "Online",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2021.acl-long.259",
    doi = "10.18653/v1/2021.acl-long.259",
    pages = "3336--3349",
}
Owner
shizhediao
shizhediao
This is the official pytorch implementation for our ICCV 2021 paper "TRAR: Routing the Attention Spans in Transformers for Visual Question Answering" on VQA Task

🌈 ERASOR (RA-L'21 with ICRA Option) Official page of "ERASOR: Egocentric Ratio of Pseudo Occupancy-based Dynamic Object Removal for Static 3D Point C

Hyungtae Lim 225 Dec 29, 2022
The codes and related files to reproduce the results for Image Similarity Challenge Track 2.

The codes and related files to reproduce the results for Image Similarity Challenge Track 2.

Wenhao Wang 89 Jan 02, 2023
Curating a dataset for bioimage transfer learning

CytoImageNet A large-scale pretraining dataset for bioimage transfer learning. Motivation In past few decades, the increase in speed of data collectio

Stanley Z. Hua 9 Jun 20, 2022
Implementation of Memory-Compressed Attention, from the paper "Generating Wikipedia By Summarizing Long Sequences"

Memory Compressed Attention Implementation of the Self-Attention layer of the proposed Memory-Compressed Attention, in Pytorch. This repository offers

Phil Wang 47 Dec 23, 2022
This repository is the official implementation of Using Time-Series Privileged Information for Provably Efficient Learning of Prediction Models

Using Time-Series Privileged Information for Provably Efficient Learning of Prediction Models Link to paper Abstract We study prediction of future out

Rickard Karlsson 2 Aug 19, 2022
Jittor Medical Segmentation Lib -- The assignment of Pattern Recognition course (2021 Spring) in Tsinghua University

THU模式识别2021春 -- Jittor 医学图像分割 模型列表 本仓库收录了课程作业中同学们采用jittor框架实现的如下模型: UNet SegNet DeepLab V2 DANet EANet HarDNet及其改动HarDNet_alter PSPNet OCNet OCRNet DL

48 Dec 26, 2022
High-Resolution 3D Human Digitization from A Single Image.

PIFuHD: Multi-Level Pixel-Aligned Implicit Function for High-Resolution 3D Human Digitization (CVPR 2020) News: [2020/06/15] Demo with Google Colab (i

Meta Research 8.4k Dec 29, 2022
PyTorch code for ICLR 2021 paper Unbiased Teacher for Semi-Supervised Object Detection

Unbiased Teacher for Semi-Supervised Object Detection This is the PyTorch implementation of our paper: Unbiased Teacher for Semi-Supervised Object Detection

Facebook Research 366 Dec 28, 2022
[ICCV '21] In this repository you find the code to our paper Keypoint Communities

Keypoint Communities In this repository you will find the code to our ICCV '21 paper: Keypoint Communities Duncan Zauss, Sven Kreiss, Alexandre Alahi,

Duncan Zauss 262 Dec 13, 2022
Fortuitous Forgetting in Connectionist Networks

Fortuitous Forgetting in Connectionist Networks Introduction This repository includes reference code for the paper Fortuitous Forgetting in Connection

Hattie Zhou 14 Nov 26, 2022
Simultaneous NMT/MMT framework in PyTorch

This repository includes the codes, the experiment configurations and the scripts to prepare/download data for the Simultaneous Machine Translation wi

<a href=[email protected]"> 37 Sep 29, 2022
A quantum game modeling of pandemic (QHack 2022)

Contributors: @JongheumJung, @YoonjaeChung, @GyunghunKim Abstract In the regime of a global pandemic, leaders around the world need to consider variou

Yoonjae Chung 8 Apr 03, 2022
Emulation and Feedback Fuzzing of Firmware with Memory Sanitization

BaseSAFE This repository contains the BaseSAFE Rust APIs, introduced by "BaseSAFE: Baseband SAnitized Fuzzing through Emulation". The example/ directo

Security in Telecommunications 138 Dec 16, 2022
Tensorflow 2 Object Detection API kurulumu, GPU desteği, custom model hazırlama

Tensorflow 2 Object Detection API Bu tutorial, TensorFlow 2.x'in kararlı sürümü olan TensorFlow 2.3'ye yöneliktir. Bu, görüntülerde / videoda nesne a

46 Nov 20, 2022
Users can free try their models on SIDD dataset based on this code

SIDD benchmark 1 Train python train.py If you want to train your network, just modify the yaml in the options folder. 2 Validation python validation.p

Yuzhi ZHAO 2 May 20, 2022
[CVPR2022] Bridge-Prompt: Towards Ordinal Action Understanding in Instructional Videos

Bridge-Prompt: Towards Ordinal Action Understanding in Instructional Videos Created by Muheng Li, Lei Chen, Yueqi Duan, Zhilan Hu, Jianjiang Feng, Jie

58 Dec 23, 2022
Official PyTorch implementation of "BlendGAN: Implicitly GAN Blending for Arbitrary Stylized Face Generation" (NeurIPS 2021)

BlendGAN: Implicitly GAN Blending for Arbitrary Stylized Face Generation Official PyTorch implementation of the NeurIPS 2021 paper Mingcong Liu, Qiang

onion 462 Dec 29, 2022
[제 13회 투빅스 컨퍼런스] OK Mugle! - 장르부터 멜로디까지, Content-based Music Recommendation

Ok Mugle! 🎵 장르부터 멜로디까지, Content-based Music Recommendation 'Ok Mugle!'은 제13회 투빅스 컨퍼런스(2022.01.15)에서 진행한 음악 추천 프로젝트입니다. Description 📖 본 프로젝트에서는 Kakao

SeongBeomLEE 5 Oct 09, 2022
Bayesian optimisation library developped by Huawei Noah's Ark Library

Bayesian Optimisation Research This directory contains official implementations for Bayesian optimisation works developped by Huawei R&D, Noah's Ark L

HUAWEI Noah's Ark Lab 395 Dec 30, 2022
Deep Distributed Control of Port-Hamiltonian Systems

De(e)pendable Distributed Control of Port-Hamiltonian Systems (DeepDisCoPH) This repository is associated to the paper [1] and it contains: The full p

Dependable Control and Decision group - EPFL 3 Aug 17, 2022