Implementation of the ICCV'21 paper Temporally-Coherent Surface Reconstruction via Metric-Consistent Atlases

Overview

Temporally-Coherent Surface Reconstruction via Metric-Consistent Atlases [Papers 1, 2][Project page] [Video]

The implementation of the papers

Install

The framework was tested with Python 3.8, PyTorch 1.7.0. and CUDA 11.0. The easiest way to work with the code is to create a new virtual Python environment and install the required packages.

  1. Install the virtualenvwrapper.
  2. Create a new environment and install the required packages.
mkvirtualenv --python=python3.8 tcsr
pip install -r requirements.txt
  1. Install Pytorch3d.
cd ~
curl -LO https://github.com/NVIDIA/cub/archive/1.10.0.tar.gz
tar xzf 1.10.0.tar.gz
export CUB_HOME=$PWD/cub-1.10.0
pip install git+https://github.com/facebookresearch/[email protected]
  1. Get the code and prepare the environment as follows:
git clone [email protected]:bednarikjan/temporally_coherent_surface_reconstruction.git
git submodule update --init --recursive
export PYTHONPATH="{PYTHONPATH}:path/to/dir/temporally_coherent_surface_reconstruction"

Get the Data

The project was tested on 6 base datasets (and their derivatives). Each datasets has to be processed so as to generate the input point clouds for training, the GT correspondences for evauluation and other auxilliary data. To do so, please use the individual scripts in tcsr/process_datasets. For each dataset, follow these steps:

  1. Download the data (links below).
  2. Open the script <dataset_name>.py and set the input/output paths.
  3. Run the script: python <dataset_name>.py

1. ANIM

  • Download the sequences horse gallop, horse collapse, camel gallop, camel collapse, and elephant gallop.
  • Download the sequence walking cat.

2. AMA

  • Download all 10 sequences, meshes only.

3. DFAUST

4. CAPE

  • Request the access to the raw scans and download it.
  • At the time of writing the paper (September 2021) four subjects (00032, 00096, 00159, 03223) were available and used in the paper.

5. INRIA

  • Request the access to the dataset and download it.
  • At the time of writing the paper (September 2021), four subjects (s1, s2, s3, s6) were available and used in the paper.

6. CMU

Train

The provided code allows for training our proposed method (OUR) but also the other atlas based approaches Differential Surface Representation (DSR) and AtlasNet (AN). The training is configured using the *.yaml configuration scripts in tcsr/train/configs.

There are 9 sample configuration files our_<dataset_name>.yaml which train OUR on each individual dataset and 2 sample configuration files an_anim.yaml, dsr_anim.yaml which train AN and DSR respectivelly on ANIM dataset.

By default, the trainin uses the exact settings as in the paper, namely it trains for 200'000 iterations using SGD, learning rate of 0.001 and batch size of 4. This can be altered in the configuration files.

Before starting the training, follow these steps:

  • Open the source file tcsr/data/data_loader.py and set the paths to the datasets in each dataset class.
  • Open the desired training configuration *.yaml file in tcsr/train/configs/ and set the output path for the training run data in the attribute path_train_run.

Start the training usint the script tcsr/train/train.py:

python train.py --conf configs/<file_name>.yaml

By default the script saves the training progress each 2000 iterations so you can safely kill it at any point and resume the trianing later using:

python train.py --cont path/to/training_run/root_dir

Evaluate

To evaluate a trianed model on the dense correspondence prediction task, use the script tcsr/evaluate/eval_dataset.py which allows for evaluation of multiple sequences (i.e. individual training runs within one dataset) at once. Please have a look at the command line arguments in the file.

An example of how to run the evaluation for the training runs contained in the root directory train_runs_root corresponding to 2 training runs run for the sequences cat_walk and horse_gallop within ANIM dataset:

python eval_dataset.py /path/to/train_runs_root --ds anim --include_seqs cat_walk horse_gallop  

The script produces a *.csv file in train_runs_root with the 4 measured metrics (see the paper).

Visualize

There are currently two ways to visualize the predictions.

1. Tensorboard

By default, the training script saves the GT and the predicted point clouds (for a couple of random data samples) each 2000 iterations. These can be viewed within Tensorboard. Each patch is visualized with a different color. This visualization is mostly useful as a sanity check during the trianing to see that the model is converging as expected.

  • Navigate to the root directory of the trianing runs and run:
tensorboard --logdir=. --port=8008 --bind_all
  • Open your browser and navigate to http://localhost:8008/

2. Per-sequence reconstruction GIF

You can view the reconstructed surfaces as a patch-wise textured mesh as a video within a GIF file. For this purpose, use the IPython Notebook file tcsr/visualize/render_uv.ipynb and open it in jupyterlab which allows for viewing the GIF right after running the code.

The rendering parameters (such as the camera location, texturing mode, gif speed etc.) are set usin the configuration file tcsr/visualize/conf_patches.yaml. There are sample configurations for the sequence cat_walk, which can be used to write configurations for other sequences/datasets.

Before running the cells, set the variables in the second cell (paths, models, data).

Citation

@inproceedings{bednarik2021temporally_coherent,
   title = {Temporally-Coherent Surface Reconstruction via Metric-Consistent Atlases},
   author = {Bednarik, Jan and Kim, Vladimir G. and Chaudhuri, Siddhartha and Parashar, Shaifali and Salzmann, Mathieu and Fua, Pascal and Aigerman, Noam},
   booktitle = {Proceedings of IEEE International Conference on Computer Vision (ICCV)},
   year = {2021}
}

@inproceedings{bednarik2021temporally_consistent,
   title = {Temporally-Consistent Surface Reconstruction via Metrically-Consistent Atlases},
   author = {Bednarik, Jan and Aigerman, Noam and Kim, Vladimir G. and Chaudhuri, Siddhartha and Parashar, Shaifali and Salzmann, Mathieu and Fua, Pascal},
   booktitle = {arXiv},
   year = {2021}
}

Acknowledgements

This work was partially done while the main author was an intern at Adobe Research.

TODO

  • Add support for visualizing the correspondence error heatmap on the GT mesh.
  • Add support for visualizing the colorcoded correspondences on the GT mesh.
  • Add the support for generating the pre-aligned AMAa dataset using ICP.
  • Add the code for the nonrigid ICP experiments.
Molecular AutoEncoder in PyTorch

MolEncoder Molecular AutoEncoder in PyTorch Install $ git clone https://github.com/cxhernandez/molencoder.git && cd molencoder $ python setup.py insta

Carlos Hernández 80 Dec 05, 2022
Lbl2Vec learns jointly embedded label, document and word vectors to retrieve documents with predefined topics from an unlabeled document corpus.

Lbl2Vec Lbl2Vec is an algorithm for unsupervised document classification and unsupervised document retrieval. It automatically generates jointly embed

sebis - TUM - Germany 61 Dec 20, 2022
ResNEsts and DenseNEsts: Block-based DNN Models with Improved Representation Guarantees

ResNEsts and DenseNEsts: Block-based DNN Models with Improved Representation Guarantees This repository is the official implementation of the empirica

Kuan-Lin (Jason) Chen 2 Oct 02, 2022
PyTorch implementation for SDEdit: Image Synthesis and Editing with Stochastic Differential Equations

SDEdit: Image Synthesis and Editing with Stochastic Differential Equations Project | Paper | Colab PyTorch implementation of SDEdit: Image Synthesis a

536 Jan 05, 2023
Simple keras FCN Encoder/Decoder model for MS-COCO (food subset) segmentation

FCN_MSCOCO_Food_Segmentation Simple keras FCN Encoder/Decoder model for MS-COCO (food subset) segmentation Input data: [http://mscoco.org/dataset/#ove

Alexander Kalinovsky 11 Jan 08, 2019
Simply enable or disable your Nvidia dGPU

EnvyControl (WIP) Simply enable or disable your Nvidia dGPU Usage First clone this repo and install envycontrol with sudo pip install . CLI Turn off y

Victor Bayas 292 Jan 03, 2023
Simple Python project using Opencv and datetime package to recognise faces and log attendance data in a csv file.

Attendance-System-based-on-Facial-recognition-Attendance-data-stored-in-csv-file- Simple Python project using Opencv and datetime package to recognise

3 Aug 09, 2022
Semantic Scholar's Author Disambiguation Algorithm & Evaluation Suite

S2AND This repository provides access to the S2AND dataset and S2AND reference model described in the paper S2AND: A Benchmark and Evaluation System f

AI2 54 Nov 28, 2022
This repository contains the implementation of the paper: Federated Distillation of Natural Language Understanding with Confident Sinkhorns

Federated Distillation of Natural Language Understanding with Confident Sinkhorns This repository provides an alternative method for ensembled distill

Deep Cognition and Language Research (DeCLaRe) Lab 11 Nov 16, 2022
Code for the CIKM 2019 paper "DSANet: Dual Self-Attention Network for Multivariate Time Series Forecasting".

Dual Self-Attention Network for Multivariate Time Series Forecasting 20.10.26 Update: Due to the difficulty of installation and code maintenance cause

Kyon Huang 223 Dec 16, 2022
Pytorch and Torch testing code of CartoonGAN

CartoonGAN-Test-Pytorch-Torch Pytorch and Torch testing code of CartoonGAN [Chen et al., CVPR18]. With the released pretrained models by the authors,

Yijun Li 642 Dec 27, 2022
Implementation of Bagging and AdaBoost Algorithm

Bagging-and-AdaBoost Implementation of Bagging and AdaBoost Algorithm Dataset Red Wine Quality Data Sets For simplicity, we will have 2 classes of win

Zechen Ma 1 Nov 01, 2021
Measure WWjj polarization fraction

WlWl Polarization Measure WWjj polarization fraction Paper: arXiv:2109.09924 Notice: This code can only be used for the inference process, if you want

4 Apr 10, 2022
Keyword spotting on Arm Cortex-M Microcontrollers

Keyword spotting for Microcontrollers This repository consists of the tensorflow models and training scripts used in the paper: Hello Edge: Keyword sp

Arm Software 1k Dec 30, 2022
Official Repository for our ECCV2020 paper: Imbalanced Continual Learning with Partitioning Reservoir Sampling

Imbalanced Continual Learning with Partioning Reservoir Sampling This repository contains the official PyTorch implementation and the dataset for our

Chris Dongjoo Kim 40 Sep 18, 2022
The pytorch implementation of DG-Font: Deformable Generative Networks for Unsupervised Font Generation

DG-Font: Deformable Generative Networks for Unsupervised Font Generation The source code for 'DG-Font: Deformable Generative Networks for Unsupervised

130 Dec 05, 2022
Official source code of paper 'IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo'

IterMVS official source code of paper 'IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo' Introduction IterMVS is a novel lear

Fangjinhua Wang 127 Jan 04, 2023
Portfolio Optimization and Quantitative Strategic Asset Allocation in Python

Riskfolio-Lib Quantitative Strategic Asset Allocation, Easy for Everyone. Description Riskfolio-Lib is a library for making quantitative strategic ass

Riskfolio 1.7k Jan 07, 2023
Pixel Consensus Voting for Panoptic Segmentation (CVPR 2020)

Implementation for Pixel Consensus Voting (CVPR 2020). This codebase contains the essential ingredients of PCV, including various spatial discretizati

Haochen 23 Oct 25, 2022
The official implementation of ELSA: Enhanced Local Self-Attention for Vision Transformer

ELSA: Enhanced Local Self-Attention for Vision Transformer By Jingkai Zhou, Pich

DamoCV 87 Dec 19, 2022