Constrained Language Models Yield Few-Shot Semantic Parsers

Overview

Constrained Language Models Yield Few-Shot Semantic Parsers

License: MIT

This repository contains tools and instructions for reproducing the experiments in the paper Constrained Language Models Yield Few-Shot Semantic Parsers (EMNLP 2021). If you use any source code or data included in this toolkit in your work, please cite the following paper.

@inproceedings{ConstrainedLMSemanticParser2021,
    title = "Constrained Language Models Yield Few-Shot Semantic Parsers",
    author = "Shin, Richard and Lin, Christopher H. and Thomson, Sam and Chen, Charles and Roy, Subhro and Platanios,  Emmanouil Antonios and Pauls, Adam and Klein, Dan and Eisner, Jason and Van Durme, Benjamin",
    booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing",
    year = "2021",
    publisher = "Association for Computational Linguistics",
}

Initial set-up

First, check that we are not unintentionally in a virtualenv. Run poetry env info; under "Virtualenv", it should show Path: NA. If it displays the path to an existing virtualenv, deactivate it, for example by running deactivate or conda deactivate.

Then run the following to set up the package:

cd semantic_parsing_with_constrained_lm
poetry config virtualenvs.in-project true --local
poetry env use 
   
    
poetry install
poetry shell

   

Before running any of the commands below, run poetry shell to activate the virtualenv where all packages have been installed. You can exit to deactivate the virtualenv.

To run any experiments with GPT-3, you will need to obtain an API key from OpenAI at https://beta.openai.com/ and set an environment variable.

export OPENAI_API_KEY=
   

   

The GPT-3 experiments use the "davinci" engine by default. You can use a different engine by setting the OPENAI_GPT3_ENGINE environment variable.

WARNING: If you run all of the experiments below using GPT-3, you will consume a very large number of tokens, and under the default pricing of OpenAI, incur a highly significant cost. If you would like to try a subset of the experiments instead:

  • Add --num-eval-examples N as an argument to the commands below to only run the evaluation on the first N examples.
  • Add --exp-names [EXPERIMENT NAME] where the experiment name is the portion of the path between logs/ and /results.json in the result locations below, to only run one experiment (corresponds to one cell in a results table of the paper).

Overnight

Preliminary setup

Download and pre-process the data for Overnight:

PIPX_HOME=.pipx PIPX_BIN_DIR=.venv/bin pipx install --python 
   
     codalab
python -m semantic_parsing_with_constrained_lm.domains.overnight.download_data

   

Fine-tuning BART models

export PRETRAINED_MODEL_DIR=facebook/bart-large
export TRAINED_MODEL_DIR=trained_models/

for domain in "basketball" "blocks" "calendar" "housing" "publications" "recipes" "restaurants" "socialnetwork"; do
    python -m semantic_parsing_with_constrained_lm.finetune.lm_finetune \
          --exp-names overnight_${domain}_utterance \
          --lr 1e-6 \
          --num-steps 20000 \
          --steps-per-save 20000 \
          --model-type BartV3 \
          --steps-per-decay 8 \
          --batch-size 32

    python -m semantic_parsing_with_constrained_lm.finetune.lm_finetune \
          --exp-names overnight_${domain}_meaningRepresentation \
          --lr 1e-5 \
          --num-steps 20000 \
          --steps-per-save 20000 \
          --model-type BartV3 \
          --steps-per-decay 8 \
          --batch-size 32
done 

Table 1

Run the following commands:

# GPT-3 Constrained Canonical
python -m semantic_parsing_with_constrained_lm.run_exp \
--config-name semantic_parsing_with_constrained_lm.configs.overnight_emnlp_camera_ready \
--log-dir logs/ \
--model GPT3 \
--eval-split test-full

# BART
export PRETRAINED_MODEL_DIR=facebook/bart-large
export TRAINED_MODEL_DIR=trained_models/
python -m semantic_parsing_with_constrained_lm.run_exp \
--config-name semantic_parsing_with_constrained_lm.configs.overnight_emnlp_camera_ready \
--log-dir logs/ \
--model Bart \
--eval-split test-full \
--exp-name-pattern 'overnight_Bart_test-full_.*_constrained_canonicalUtterance_train-200'

Then you can find the following results at the specified locations.

  • GPT-3 Constrained Canonical: logs/overnight_GPT3_test-full_${DOMAIN}_constrained_canonicalUtterance_train-200/results.json
  • BART Constrained Canonical: logs/overnight_Bart_test-full_${DOMAIN}_constrained_canonicalUtterance_train-200/results.json
  • All rows below the horizontal line: results were copied from the cited papers.

In the results.json files, each number in the table comes from "denotation/top1". ${DOMAIN} can be one of the following: calendar, basketball, blocks, housing, publications, recipes, restaurants, socialnetwork.

Table 2

Run the following commands:

# GPT-3 
python -m semantic_parsing_with_constrained_lm.run_exp \
--config-name semantic_parsing_with_constrained_lm.configs.overnight_emnlp_camera_ready \
--log-dir logs/ \
--model GPT3 \
--eval-split test-subset \
--exp-name-pattern 'overnight_GPT3_test-subset_.*_(constrained|unconstrained-greedy)_.*_train-200' \
--exp-name-pattern 'overnight_GPT3_test-subset_.*_constrained_canonicalUtterance_train-20'

# BART
export PRETRAINED_MODEL_DIR=facebook/bart-large
export TRAINED_MODEL_DIR=trained_models/
python -m semantic_parsing_with_constrained_lm.run_exp \
--config-name semantic_parsing_with_constrained_lm.configs.overnight_emnlp_camera_ready \
--log-dir logs/ \
--model Bart \
--eval-split test-full \
--exp-name-pattern 'overnight_Bart_test-full_.*_train-200'

Then you can find the following results at the specified locations:

  • GPT-3 Constrained Canonical: logs/overnight_GPT3_test-subset_${DOMAIN}_constrained_canonicalUtterance_train-200/results.json
  • GPT-3 Constrained Meaning: logs/overnight_GPT3_test-subset_${DOMAIN}_constrained_meaningRepresentation_train-200/results.json
  • GPT-3 Unconstrained Canonical: logs/overnight_GPT3_test-subset_${DOMAIN}_unconstrained_canonicalUtterance_train-200/results.json
  • GPT-3 Unconstrained Meaning: logs/overnight_GPT3_test-subset_${DOMAIN}_unconstrained_meaningRepresentation_train-200/results.json
  • GPT-3 Constrained Canonical, n = 20: logs/overnight_GPT3_test-subset_${DOMAIN}_constrained_canonicalUtterance_train-20/results.json
  • BART Constrained Canonical: logs/overnight_Bart_test-full_${DOMAIN}_constrained_canonicalUtterance_train-200/results.json
  • BART Constrained Meaning: logs/overnight_Bart_test-full_${DOMAIN}_constrained_meaningRepresentation_train-200/results.json
  • BART Unconstrained Canonical: logs/overnight_Bart_test-full_${DOMAIN}_unconstrained_canonicalUtterance_train-200/results.json
  • BART Unconstrained Meaning: logs/overnight_Bart_test-full_${DOMAIN}_unconstrained_meaningRepresentation_train-200/results.json

Figure 2

Run the following command:

python -m semantic_parsing_with_constrained_lm.run_exp \
--config-name semantic_parsing_with_constrained_lm.configs.overnight_emnlp_camera_ready \
--log-dir logs/ \
--model GPT3 \
--eval-split test-subset \
--exp-name-pattern 'overnight_GPT3_test-subset_calendar_(constrained|unconstrained-beam)_.*_train-.*'

The data for the following series in the plot come from these files:

  • CC (200): logs/overnight_GPT3_test-subset_calendar_constrained_canonicalUtterance_train-200/results.json
  • CM (200): logs/overnight_GPT3_test-subset_calendar_constrained_meaningRepresentation_train-200/results.json
  • UC (200): logs/overnight_GPT3_test-subset_calendar_unconstrained-beam_canonicalUtterance_train-200/results.json
  • UM (200): logs/overnight_GPT3_test-subset_calendar_unconstrained-beam_meaningRepresentation_train-200/results.json
  • CC (20): logs/overnight_GPT3_test-subset_calendar_constrained_canonicalUtterance_train-20/results.json

Each point in the series gets its value from the "denotation/topN" field, where N varies between 1 and 10.

Break

Preliminary setup

Install our copy of break-evaluator so that it is available on your path.

PIPX_HOME=.pipx PIPX_BIN_DIR=.venv/bin pipx install --python 
   
     third_party/break-evaluator

   

Fine-tuning BART

export PRETRAINED_MODEL_DIR=facebook/bart-large
export TRAINED_MODEL_DIR=trained_models/

python -m semantic_parsing_with_constrained_lm.finetune.lm_finetune \
      --exp-names break_nested \
      --lr 1e-6 \
      --num-steps 20000 \
      --steps-per-save 20000 \
      --model-type BartV3 \
      --steps-per-decay 6 \
      --batch-size 32

python -m semantic_parsing_with_constrained_lm.finetune.lm_finetune \
      --exp-names break_QDMR \
      --lr 1e-5 \
      --num-steps 20000 \
      --steps-per-save 20000 \
      --model-type BartV3 \
      --steps-per-decay 2 \
      --batch-size 32

Table 3

Run the following commands:

# GPT-3
python -m semantic_parsing_with_constrained_lm.run_exp \
--config-name semantic_parsing_with_constrained_lm.configs.qdmr_break_emnlp_camera_ready \
--log-dir logs/ \
--model GPT3 \
--eval-split dev-subset 

python -m semantic_parsing_with_constrained_lm.run_exp \
--config-name semantic_parsing_with_constrained_lm.configs.qdmr_break_emnlp_camera_ready \
--log-dir logs/ \
--model GPT3 \
--eval-split dev-full

# BART
export PRETRAINED_MODEL_DIR=facebook/bart-large
export TRAINED_MODEL_DIR=trained_models/
python -m semantic_parsing_with_constrained_lm.run_exp \
--config-name semantic_parsing_with_constrained_lm.configs.qdmr_break_emnlp_camera_ready \
--log-dir logs/ \
--model GPT3 \
--eval-split dev-full 

Then you can find the following results at the specified locations:

  • Wolfson et al: https://leaderboard.allenai.org/break/submission/c4b3v1j22jqbqs7it330
  • Coleman & Reneau: https://leaderboard.allenai.org/break/submission/c24mbsl7pqtiaau8vv00
  • GPT-3 Constrained Canonical, n = 1000: logs/break_GPT3_dev-subset_constrained_nested_train1000/results.json
  • GPT-3 Constrained Canonical, n = 100: logs/break_GPT3_dev-subset_constrained_nested_train100/results.json
  • GPT-3 Constrained Canonical, n = 25: logs/break_GPT3_dev-subset_constrained_nested_train25/results.json
  • GPT-3 Constrained Canonical, n = 200: logs/break_GPT3_dev-subset_constrained_nested_train200/results.json
  • GPT-3 Constrained Meaning, n = 200: logs/break_GPT3_dev-subset_constrained_QDMR_train200/results.json
  • GPT-3 Unconstrained Canonical, n = 200: logs/break_GPT3_dev-subset_unconstrained-greedy_nested_train200/results.json
  • GPT-3 Unconstrained Meaning, n = 200: logs/break_GPT3_dev-subset_unconstrained-greedy_QDMR_train200/results.json (horizontal rule)
  • GPT-3 Constrained Canonical, n = 200, full dev set: logs/break_GPT3_dev-full_constrained_nested_train200/results.json
  • BART Constrained Canonical, n = 200: logs/break_Bart_dev-full_constrained_nested_train200/results.json
  • BART Constrained Meaning, n = 200: logs/break_Bart_dev-full_constrained_QDMR_train200/results.json
  • BART Unconstrained Canonical, n = 200: logs/break_Bart_dev-full_unconstrained-greedy_nested_train200/results.json
  • BART Unconstrained Meaning, n = 200: logs/break_Bart_dev-full_unconstrained-greedy_QDMR_train200/results.json

In the results.json files, each number in the table comes from "break_metrics/nem @ 1".

Figure 3

Run the following command:

python -m semantic_parsing_with_constrained_lm.run_exp \
--config-name semantic_parsing_with_constrained_lm.configs.qdmr_break_emnlp_camera_ready \
--log-dir logs/ \
--model GPT3 \
--eval-split dev-subset \
--exp-name-pattern '.*constrained.*train(1000|200)'

The data for the following series in the plot come from the following files:

  • CC (1000): logs/break_GPT3_dev-subset_constrained_nested_train1000/results.json
  • CM (1000): logs/break_GPT3_dev-subset_constrained_QDMR_train1000/results.json
  • CC (200): logs/break_GPT3_dev-subset_constrained_nested_train200/results.json
  • CM (200): logs/break_GPT3_dev-subset_constrained_QDMR_train200/results.json

Each point in the series gets its value from the "break_metrics/nem @ 1" field, where N varies between 1 and 10.

SMCalFlow

Preliminary setup

Create the SCFG and preprocess the data by running the following:

python -m semantic_parsing_with_constrained_lm.domains.calflow.write_data

This script will output semantic_parsing_with_constrained_lm/domains/calflow/grammar/grammar.scfg based on the .csv files in semantic_parsing_with_constrained_lm/domains/calflow/data. It will also download a version of SMCalFlow pre-processed to collapse certain nested function calls and remove re-entrancies (references to earlier nodes in the graph), and process them to create semantic_parsing_with_constrained_lm/domains/calflow/data/{test_200_uniform,train_300_stratified,train_1000_stratified,dev_all}.jsonl.

Fine-tuning BART

export PRETRAINED_MODEL_DIR=facebook/bart-large
export TRAINED_MODEL_DIR=trained_models/

python -m semantic_parsing_with_constrained_lm.finetune.lm_finetune \
      --exp-names calflow_canonicalUtterance \
      --lr 1e-5 \
      --num-steps 20000 \
      --steps-per-save 20000 \
      --model-type BartV3 \
      --steps-per-decay 2 \
      --batch-size 32

python -m semantic_parsing_with_constrained_lm.finetune.lm_finetune \
      --exp-names calflow_lispress \
      --lr 1e-5 \
      --num-steps 20000 \
      --steps-per-save 20000 \
      --model-type BartV3 \
      --steps-per-decay 2 \
      --batch-size 32

Table 4

Run the following commands:

# GPT-3
python -m semantic_parsing_with_constrained_lm.run_exp \
--config-name semantic_parsing_with_constrained_lm.configs.calflow_emnlp_camera_ready \
--log-dir logs/ \
--model GPT3 \
--eval-split dev-full

python -m semantic_parsing_with_constrained_lm.run_exp \
--config-name semantic_parsing_with_constrained_lm.configs.calflow_emnlp_camera_ready \
--log-dir logs/ \
--model GPT3 \
--eval-split dev-subset

# BART
export PRETRAINED_MODEL_DIR=facebook/bart-large
export TRAINED_MODEL_DIR=trained_models/
python -m semantic_parsing_with_constrained_lm.run_exp \
--config-name semantic_parsing_with_constrained_lm.configs.calflow_emnlp_camera_ready \
--log-dir logs/ \
--model Bart \
--eval-split dev-full 

Then you can find the following results at the specified locations:

  • GPT-3 Constrained Canonical: logs/calflow_GPT3_dev-subset_constrained_canonicalUtterance_prompt20/results.json
  • GPT-3 Constrained Meaning: logs/calflow_GPT3_dev-subset_constrained_lispress_prompt20/results.json
  • GPT-3 Unconstrained Canonical: logs/calflow_GPT3_dev-subset_unconstrained-greedy_canonicalUtterance_prompt20/results.json
  • GPT-3 Unconstrained Meaning: logs/calflow_GPT3_dev-subset_unconstrained-greedy_lispress_prompt20/results.json (horizontal rule)
  • GPT-3 Constrained Canonical, full dev set: logs/calflow_GPT3_dev-full_constrained_canonicalUtterance_prompt20/results.json
  • BART Constrained Canonical: logs/calflow_Bart_dev-full_constrained_canonicalUtterance_prompt0/results.json
  • BART Constrained Meaning: logs/calflow_Bart_dev-full_constrained_lispress_prompt0/results.json
  • BART Unconstrained Canonical: logs/calflow_Bart_dev-full_unconstrained-greedy_canonicalUtterance_prompt0/results.json
  • BART Unconstrained Meaning: logs/calflow_Bart_dev-full_unconstrained-greedy_lispress_prompt0/results.json

In the results.json files, each number in the table comes from "roundtrip/top1".

Figure 4

Run the following commands:

python -m semantic_parsing_with_constrained_lm.run_exp \
--config-name semantic_parsing_with_constrained_lm.configs.calflow_emnlp_camera_ready \
--log-dir logs/ \
--model GPT3 \
--eval-split dev-full

export PRETRAINED_MODEL_DIR=facebook/bart-large
export TRAINED_MODEL_DIR=trained_models/
python -m semantic_parsing_with_constrained_lm.run_exp \
--config-name semantic_parsing_with_constrained_lm.configs.calflow_emnlp_camera_ready \
--log-dir logs/ \
--model Bart \
--eval-split dev-full  \
--exp-name-pattern '.*constrained.*'

The data for the following series in the plot come from the following files:

  • GPT-3 CC: logs/calflow_GPT3_dev-subset_constrained_canonicalUtterance_prompt20/results.json
  • BART CC: logs/calflow_Bart_dev-full_constrained_canonicalUtterance_prompt0/results.json
  • BART CM: logs/calflow_Bart_dev-full_constrained_lispress_prompt0/results.json

Each point in the series gets its value from the "roundtrip/topN" field, where N varies between 1 and 10.

Contributing

This project welcomes contributions and suggestions. Most contributions require you to agree to a Contributor License Agreement (CLA) declaring that you have the right to, and actually do, grant us the rights to use your contribution. For details, visit https://cla.opensource.microsoft.com.

When you submit a pull request, a CLA bot will automatically determine whether you need to provide a CLA and decorate the PR appropriately (e.g., status check, comment). Simply follow the instructions provided by the bot. You will only need to do this once across all repos using our CLA.

This project has adopted the Microsoft Open Source Code of Conduct. For more information see the Code of Conduct FAQ or contact [email protected] with any additional questions or comments.

Trademarks

This project may contain trademarks or logos for projects, products, or services. Authorized use of Microsoft trademarks or logos is subject to and must follow Microsoft's Trademark & Brand Guidelines. Use of Microsoft trademarks or logos in modified versions of this project must not cause confusion or imply Microsoft sponsorship. Any use of third-party trademarks or logos are subject to those third-party's policies.

Owner
Microsoft
Open source projects and samples from Microsoft
Microsoft
Improving adversarial robustness by a coupling rejection strategy

Adversarial Training with Rectified Rejection The code for the paper Adversarial Training with Rectified Rejection. Environment settings and libraries

Tianyu Pang 29 Jan 06, 2023
PyTorch-Multi-Style-Transfer - Neural Style and MSG-Net

PyTorch-Style-Transfer This repo provides PyTorch Implementation of MSG-Net (ours) and Neural Style (Gatys et al. CVPR 2016), which has been included

Hang Zhang 906 Jan 04, 2023
Epidemiology analysis package

zEpid zEpid is an epidemiology analysis package, providing easy to use tools for epidemiologists coding in Python 3.5+. The purpose of this library is

Paul Zivich 111 Jan 08, 2023
Sub-tomogram-Detection - Deep learning based model for Cyro ET Sub-tomogram-Detection

Deep learning based model for Cyro ET Sub-tomogram-Detection High degree of stru

Siddhant Kumar 2 Feb 04, 2022
Pansharpening by convolutional neural networks in the full resolution framework

Z-PNN: Zoom Pansharpening Neural Network Pansharpening by convolutional neural networks in the full resolution framework is a deep learning method for

20 Nov 24, 2022
Real-Time Social Distance Monitoring tool using Computer Vision

Social Distance Detector A Real-Time Social Distance Monitoring Tool Table of Contents Motivation YOLO Theory Detection Output Tech Stack Functionalit

Pranav B 13 Oct 14, 2022
How to use TensorLayer

How to use TensorLayer While research in Deep Learning continues to improve the world, we use a bunch of tricks to implement algorithms with TensorLay

zhangrui 349 Dec 07, 2022
Source code for our CVPR 2019 paper - PPGNet: Learning Point-Pair Graph for Line Segment Detection

PPGNet: Learning Point-Pair Graph for Line Segment Detection PyTorch implementation of our CVPR 2019 paper: PPGNet: Learning Point-Pair Graph for Line

SVIP Lab 170 Oct 25, 2022
Code for Robust Contrastive Learning against Noisy Views

Robust Contrastive Learning against Noisy Views This repository provides a PyTorch implementation of the Robust InfoNCE loss proposed in paper Robust

Ching-Yao Chuang 53 Jan 08, 2023
Official implementation of NeurIPS'21: Implicit SVD for Graph Representation Learning

isvd Official implementation of NeurIPS'21: Implicit SVD for Graph Representation Learning If you find this code useful, you may cite us as: @inprocee

Sami Abu-El-Haija 16 Jan 08, 2023
JORLDY an open-source Reinforcement Learning (RL) framework provided by KakaoEnterprise

Repository for Open Source Reinforcement Learning Framework JORLDY

Kakao Enterprise Corp. 330 Dec 30, 2022
[CVPR 21] Vectorization and Rasterization: Self-Supervised Learning for Sketch and Handwriting, IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2021.

Vectorization and Rasterization: Self-Supervised Learning for Sketch and Handwriting, CVPR 2021. Ayan Kumar Bhunia, Pinaki nath Chowdhury, Yongxin Yan

Ayan Kumar Bhunia 44 Dec 12, 2022
[v1 (ISBI'21) + v2] MedMNIST: A Large-Scale Lightweight Benchmark for 2D and 3D Biomedical Image Classification

MedMNIST Project (Website) | Dataset (Zenodo) | Paper (arXiv) | MedMNIST v1 (ISBI'21) Jiancheng Yang, Rui Shi, Donglai Wei, Zequan Liu, Lin Zhao, Bili

683 Dec 28, 2022
🥈78th place in Riiid Answer Correctness Prediction competition

Riiid Answer Correctness Prediction Introduction This repository is the code that placed 78th in Riiid Answer Correctness Prediction competition. Requ

Jungwoo Park 10 Jul 14, 2022
A toolkit for controlling Euro Truck Simulator 2 with python to develop self-driving algorithms.

europilot Overview Europilot is an open source project that leverages the popular Euro Truck Simulator(ETS2) to develop self-driving algorithms. A con

1.4k Jan 04, 2023
Vector.ai assignment

fabio-tests-nisargatman Low Level Approach: ###Tables: continents: id*, name, population, area, createdAt, updatedAt countries: id*, name, population,

Ravi Pullagurla 1 Nov 09, 2021
Pytorch implementation of "A simple neural network module for relational reasoning" (Relational Networks)

Pytorch implementation of Relational Networks - A simple neural network module for relational reasoning Implemented & tested on Sort-of-CLEVR task. So

Kim Heecheol 800 Dec 05, 2022
PyTorch code for training MM-DistillNet for multimodal knowledge distillation

There is More than Meets the Eye: Self-Supervised Multi-Object Detection and Tracking with Sound by Distilling Multimodal Knowledge MM-DistillNet is a

51 Dec 20, 2022
Turning pixels into virtual points for multimodal 3D object detection.

Multimodal Virtual Point 3D Detection Turning pixels into virtual points for multimodal 3D object detection. Multimodal Virtual Point 3D Detection, Ti

Tianwei Yin 204 Jan 08, 2023
Unifying Global-Local Representations in Salient Object Detection with Transformer

GLSTR (Global-Local Saliency Transformer) This is the official implementation of paper "Unifying Global-Local Representations in Salient Object Detect

11 Aug 24, 2022