Code for IntraQ, PyTorch implementation of our paper under review

Overview

IntraQ: Learning Synthetic Images with Intra-Class Heterogeneity for Zero-Shot Network Quantization paper

Requirements

Python >= 3.7.10

Pytorch == 1.7.1

Reproduce results

Stage1: Generate data.

cd data_generate

Please install all required package in requirements.txt.

"--save_path_head" in run_generate_cifar10.sh/run_generate_cifar100.sh is the path where you want to save your generated data pickle.

For cifar10/100

bash run_generate_cifar10.sh
bash run_generate_cifar100.sh

For ImageNet

"--save_path_head" in run_generate.sh is the path where you want to save your generated data pickle.

"--model" in run_generate.sh is the pre-trained model you want (also is the quantized model). You can use resnet18/mobilenet_w1/mobilenetv2_w1.

bash run_generate.sh

Stage2: Train the quantized network

cd ..
  1. Modify "qw" and "qa" in cifar10_resnet20.hocon/cifar100_resnet20.hocon/imagenet.hocon to select desired bit-width.

  2. Modify "dataPath" in cifar10_resnet20.hocon/cifar100_resnet20.hocon/imagenet.hocon to the real dataset path (for construct the test dataloader).

  3. Modify the "Path_to_data_pickle" in main_direct.py (line 122 and line 135) to the data_path and label_path you just generate from Stage1.

  4. Use the below commands to train the quantized network. Please note that the model that generates the data and the quantized model should be the same.

For cifar10/100

python main_direct.py --model_name resnet20_cifar10 --conf_path cifar10_resnet20.hocon --id=0

python main_direct.py --model_name resnet20_cifar100 --conf_path cifar100_resnet20.hocon --id=0

For ImageNet, you can choose the model by modifying "--model_name" (resnet18/mobilenet_w1/mobilenetv2_w1)

python main_direct.py --model_name resnet18 --conf_path imagenet.hocon --id=0

Evaluate pre-trained models

The pre-trained models and corresponding logs can be downloaded here

Please make sure the "qw" and "qa" in *.hocon, *.hocon, "--model_name" and "--model_path" are correct.

For cifar10/100

python test.py --model_name resnet20_cifar10 --model_path path_to_pre-trained model --conf_path cifar10_resnet20.hocon

python test.py --model_name resnet20_cifar100 --model_path path_to_pre-trained model --conf_path cifar100_resnet20.hocon

For ImageNet

python test.py --model_name resnet18/mobilenet_w1/mobilenetv2_w1 --model_path path_to_pre-trained model --conf_path imagenet.hocon

Results of pre-trained models are shown below:

Model Bit-width Dataset Top-1 Acc.
resnet18 W4A4 ImageNet 66.47%
resnet18 W5A5 ImageNet 69.94%
mobilenetv1 W4A4 ImageNet 51.36%
mobilenetv1 W5A5 ImageNet 68.17%
mobilenetv2 W4A4 ImageNet 65.10%
mobilenetv2 W5A5 ImageNet 71.28%
resnet-20 W3A3 cifar10 77.07%
resnet-20 W4A4 cifar10 91.49%
resnet-20 W3A3 cifar100 64.98%
resnet-20 W4A4 cifar100 48.25%
Neural Scene Flow Prior (NeurIPS 2021 spotlight)

Neural Scene Flow Prior Xueqian Li, Jhony Kaesemodel Pontes, Simon Lucey Will appear on Thirty-fifth Conference on Neural Information Processing Syste

Lilac Lee 85 Jan 03, 2023
Implementation for Paper "Inverting Generative Adversarial Renderer for Face Reconstruction"

StyleGAR TODO: add arxiv link Implementation of Inverting Generative Adversarial Renderer for Face Reconstruction TODO: for test Currently, some model

155 Oct 27, 2022
Contenido del curso Bases de datos del DCC PUC versión 2021-2

IIC2413 - Bases de Datos Tabla de contenidos Equipo Profesores Ayudantes Contenidos Calendario Evaluaciones Resumen de notas Foro Política de integrid

54 Nov 23, 2022
GradAttack is a Python library for easy evaluation of privacy risks in public gradients in Federated Learning

GradAttack is a Python library for easy evaluation of privacy risks in public gradients in Federated Learning, as well as corresponding mitigation strategies.

129 Dec 30, 2022
Clockwork Variational Autoencoder

Clockwork Variational Autoencoders (CW-VAE) Vaibhav Saxena, Jimmy Ba, Danijar Hafner If you find this code useful, please reference in your paper: @ar

Vaibhav Saxena 35 Nov 06, 2022
PyTorch package for the discrete VAE used for DALL·E.

Overview [Blog] [Paper] [Model Card] [Usage] This is the official PyTorch package for the discrete VAE used for DALL·E. Installation Before running th

OpenAI 9.5k Jan 05, 2023
NeRD: Neural Reflectance Decomposition from Image Collections

NeRD: Neural Reflectance Decomposition from Image Collections Project Page | Video | Paper | Dataset Implementation for NeRD. A novel method which dec

Computergraphics (University of Tübingen) 195 Dec 29, 2022
This repository contains answers of the Shopify Summer 2022 Data Science Intern Challenge.

Data-Science-Intern-Challenge This repository contains answers of the Shopify Summer 2022 Data Science Intern Challenge. Summer 2022 Data Science Inte

1 Jan 11, 2022
Official repository of Semantic Image Matting

Semantic Image Matting This is the official repository of Semantic Image Matting (CVPR2021). Overview Natural image matting separates the foreground f

192 Dec 29, 2022
This repository contains the reference implementation for our proposed Convolutional CRFs.

ConvCRF This repository contains the reference implementation for our proposed Convolutional CRFs in PyTorch (Tensorflow planned). The two main entry-

Marvin Teichmann 553 Dec 07, 2022
use machine learning to recognize gesture on raspberrypi

Raspberrypi_Gesture-Recognition use machine learning to recognize gesture on raspberrypi 說明 利用 tensorflow lite 訓練手部辨識模型 分辨 "剪刀"、"石頭"、"布" 之手勢 再將訓練模型匯入

1 Dec 10, 2021
PyTorch Personal Trainer: My framework for deep learning experiments

Alex's PyTorch Personal Trainer (ptpt) (name subject to change) This repository contains my personal lightweight framework for deep learning projects

Alex McKinney 8 Jul 14, 2022
My solutions for Stanford University course CS224W: Machine Learning with Graphs Fall 2021 colabs (GNN, GAT, GraphSAGE, GCN)

machine-learning-with-graphs My solutions for Stanford University course CS224W: Machine Learning with Graphs Fall 2021 colabs Course materials can be

Marko Njegomir 7 Dec 14, 2022
[ICCV'21] Pri3D: Can 3D Priors Help 2D Representation Learning?

Pri3D: Can 3D Priors Help 2D Representation Learning? [ICCV 2021] Pri3D leverages 3D priors for downstream 2D image understanding tasks: during pre-tr

Ji Hou 124 Jan 06, 2023
A PyTorch implementation of Learning to learn by gradient descent by gradient descent

Intro PyTorch implementation of Learning to learn by gradient descent by gradient descent. Run python main.py TODO Initial implementation Toy data LST

Ilya Kostrikov 300 Dec 11, 2022
PyTorch implementation of Glow

glow-pytorch PyTorch implementation of Glow, Generative Flow with Invertible 1x1 Convolutions (https://arxiv.org/abs/1807.03039) Usage: python train.p

Kim Seonghyeon 433 Dec 27, 2022
Code for "PV-RAFT: Point-Voxel Correlation Fields for Scene Flow Estimation of Point Clouds", CVPR 2021

PV-RAFT This repository contains the PyTorch implementation for paper "PV-RAFT: Point-Voxel Correlation Fields for Scene Flow Estimation of Point Clou

Yi Wei 43 Dec 05, 2022
Deep Federated Learning for Autonomous Driving

FADNet: Deep Federated Learning for Autonomous Driving Abstract Autonomous driving is an active research topic in both academia and industry. However,

AIOZ AI 12 Dec 01, 2022
Official PyTorch Implementation of Learning Architectures for Binary Networks

Learning Architectures for Binary Networks An Pytorch Implementation of the paper Learning Architectures for Binary Networks (BNAS) (ECCV 2020) If you

Computer Vision Lab. @ GIST 25 Jun 09, 2022
Code for EMNLP 2021 paper: "Learning Implicit Sentiment in Aspect-based Sentiment Analysis with Supervised Contrastive Pre-Training"

SCAPT-ABSA Code for EMNLP2021 paper: "Learning Implicit Sentiment in Aspect-based Sentiment Analysis with Supervised Contrastive Pre-Training" Overvie

Zhengyan Li 66 Dec 04, 2022