Official repository of Semantic Image Matting

Related tags

Deep LearningSIM
Overview

Semantic Image Matting


This is the official repository of Semantic Image Matting (CVPR2021).

Overview

framework

Natural image matting separates the foreground from background in fractional occupancy which can be caused by highly transparent objects, complex foreground (e.g., net or tree), and/or objects containing very fine details (e.g., hairs). Although conventional matting formulation can be applied to all of the above cases, no previous work has attempted to reason the underlying causes of matting due to various foreground semantics.

We show how to obtain better alpha mattes by incorporating into our framework semantic classification of matting regions. Specifically, we consider and learn 20 classes of matting patterns, and propose to extend the conventional trimap to semantic trimap. The proposed semantic trimap can be obtained automatically through patch structure analysis within trimap regions. Meanwhile, we learn a multi-class discriminator to regularize the alpha prediction at semantic level, and content-sensitive weights to balance different regularization losses.

Dataset

Download our semantic image matting dataset (SIMD) here. SIMD is composed self-collected images and a subset of adobe images. To obtain the complete dataset, please contact Brian Price ([email protected]) for the Adobe Image Matting dataset first and follow the instructions within SIMD.zip.

Requirements

The codes are tested in the following environment:

  • Python 3.7
  • Pytorch 1.9.0
  • CUDA 10.2 & CuDNN 7.6.5

Performance

Some pretrained models are listed below with their performance.

Methods SAD MSE Grad Conn Link
SIMD 27.9 4.7 11.6 20.8 model
Composition-1K (paper) 28.0 5.8 10.8 24.8
Composition-1K (repo) 27.7 5.6 10.7 24.4 model

Run

Download the model and put it under checkpoints/DIM or checkpoints/Adobe in the root directory. Download the classifier here and put it under checkpoints. Run the inference and evaluation by

python scripts/main.py -c config/CONFIG.yaml 

Results

example1

example2

Reference

If you find our work useful in your research, please consider citing:

@inproceedings{sun2021sim,
  author    = {Yanan Sun and Chi-Keung Tang and Yu-Wing Tai}
  title     = {Semantic Image Matting},
  booktitle = {Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
  year      = {2021},
}

Acknowledgment

This repo borrows code from several repos, like GCA and FBA.

A python library for implementing a recommender system

python-recsys A python library for implementing a recommender system. Installation Dependencies python-recsys is build on top of Divisi2, with csc-pys

Oscar Celma 1.5k Dec 17, 2022
GEA - Code for Guided Evolution for Neural Architecture Search

Efficient Guided Evolution for Neural Architecture Search Usage Create a conda e

6 Jan 03, 2023
PyTorch Lightning + Hydra. A feature-rich template for rapid, scalable and reproducible ML experimentation with best practices. ⚡🔥⚡

Lightning-Hydra-Template A clean and scalable template to kickstart your deep learning project 🚀 ⚡ 🔥 Click on Use this template to initialize new re

Łukasz Zalewski 2.1k Jan 09, 2023
Create Data & AI apps in 20 lines of code with Shimoku

Install with: pip install shimoku-api-python Start with: from os import getenv import shimoku_api_python.client as Shimoku

Shimoku 5 Nov 07, 2022
Pytorch Implementation of Auto-Compressing Subset Pruning for Semantic Image Segmentation

Pytorch Implementation of Auto-Compressing Subset Pruning for Semantic Image Segmentation Introduction ACoSP is an online pruning algorithm that compr

Merantix 8 Dec 07, 2022
U-2-Net: U Square Net - Modified for paired image training of style transfer

U2-Net: U Square Net Modified for paired image training of style transfer This is an unofficial repo making use of the code which was made available b

Doron Adler 43 Oct 03, 2022
Code for KDD'20 "Generative Pre-Training of Graph Neural Networks"

GPT-GNN: Generative Pre-Training of Graph Neural Networks GPT-GNN is a pre-training framework to initialize GNNs by generative pre-training. It can be

Ziniu Hu 346 Dec 19, 2022
Black-Box-Tuning - Black-Box Tuning for Language-Model-as-a-Service

Black-Box-Tuning Source code for paper "Black-Box Tuning for Language-Model-as-a-Service". Being busy recently, the code in this repo and this tutoria

Tianxiang Sun 149 Jan 04, 2023
SlotRefine: A Fast Non-Autoregressive Model forJoint Intent Detection and Slot Filling

SlotRefine: A Fast Non-Autoregressive Model for Joint Intent Detection and Slot Filling Reference Main paper to be cited (Di Wu et al., 2020) @article

Moore 34 Nov 03, 2022
Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering

Graph ConvNets in PyTorch October 15, 2017 Xavier Bresson http://www.ntu.edu.sg/home/xbresson https://github.com/xbresson https://twitter.com/xbresson

Xavier Bresson 287 Jan 04, 2023
Tackling data scarcity in Speech Translation using zero-shot multilingual Machine Translation techniques

Tackling data scarcity in Speech Translation using zero-shot multilingual Machine Translation techniques This repository is derived from the NMTGMinor

Tu Anh Dinh 1 Sep 07, 2022
GAN JAX - A toy project to generate images from GANs with JAX

GAN JAX - A toy project to generate images from GANs with JAX This project aims to bring the power of JAX, a Python framework developped by Google and

Valentin Goldité 14 Nov 29, 2022
Fully Connected DenseNet for Image Segmentation

Fully Connected DenseNets for Semantic Segmentation Fully Connected DenseNet for Image Segmentation implementation of the paper The One Hundred Layers

Somshubra Majumdar 84 Oct 31, 2022
Vertex AI: Serverless framework for MLOPs (ESP / ENG)

Vertex AI: Serverless framework for MLOPs (ESP / ENG) Español Qué es esto? Este repo contiene un pipeline end to end diseñado usando el SDK de Kubeflo

Hernán Escudero 2 Apr 28, 2022
Baseline powergrid model for NY

Baseline-powergrid-model-for-NY Table of Contents About The Project Built With Usage License Contact Acknowledgements About The Project As the urgency

Anderson Energy Lab at Cornell 6 Nov 24, 2022
A Python module for parallel optimization of expensive black-box functions

blackbox: A Python module for parallel optimization of expensive black-box functions What is this? A minimalistic and easy-to-use Python module that e

Paul Knysh 426 Dec 08, 2022
Code for MentorNet: Learning Data-Driven Curriculum for Very Deep Neural Networks

MentorNet: Learning Data-Driven Curriculum for Very Deep Neural Networks This is the code for the paper: MentorNet: Learning Data-Driven Curriculum fo

Google 302 Dec 23, 2022
A smaller subset of 10 easily classified classes from Imagenet, and a little more French

Imagenette 🎶 Imagenette, gentille imagenette, Imagenette, je te plumerai. 🎶 (Imagenette theme song thanks to Samuel Finlayson) NB: Versions of Image

fast.ai 718 Jan 01, 2023
LBBA-boosted WSOD

LBBA-boosted WSOD Summary Our code is based on ruotianluo/pytorch-faster-rcnn and WSCDN Sincerely thanks for your resources. Newer version of our code

Martin Dong 20 Sep 19, 2022
PyTorch implementation of our ICCV2021 paper: StructDepth: Leveraging the structural regularities for self-supervised indoor depth estimation

StructDepth PyTorch implementation of our ICCV2021 paper: StructDepth: Leveraging the structural regularities for self-supervised indoor depth estimat

SJTU-ViSYS 112 Nov 28, 2022