PyTorch Personal Trainer: My framework for deep learning experiments

Related tags

Deep Learningptpt
Overview

Alex's PyTorch Personal Trainer (ptpt)

(name subject to change)

This repository contains my personal lightweight framework for deep learning projects in PyTorch.

Disclaimer: this project is very much work-in-progress. Although technically useable, it is missing many features. Nonetheless, you may find some of the design patterns and code snippets to be useful in the meantime.

Installation

Simply run python -m build in the root of the repo, then run pip install on the resulting .whl file.

No pip package yet..

Usage

Import the library as with any other python library:

from ptpt.trainer import Trainer, TrainerConfig
from ptpt.log import debug, info, warning, error, critical

The core of the library is the trainer.Trainer class. In the simplest case, it takes the following as input:

net:            a `nn.Module` that is the model we wish to train.
loss_fn:        a function that takes a `nn.Module` and a batch as input.
                it returns the loss and optionally other metrics.
train_dataset:  the training dataset.
test_dataset:   the test dataset.
cfg:            a `TrainerConfig` instance that holds all
                hyperparameters.

Once this is instantiated, starting the training loop is as simple as calling trainer.train() where trainer is an instance of Trainer.

cfg stores most of the configuration options for Trainer. See the class definition of TrainerConfig for details on all options.

Examples

An example workflow would go like this:

Define your training and test datasets:

transform=transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize((0.1307,), (0.3081,))
])
train_dataset = datasets.MNIST('../data', train=True, download=True, transform=transform)
test_dataset = datasets.MNIST('../data', train=False, download=True, transform=transform)

Define your model:

# in this case, we have imported `Net` from another file
net = Net()

Define your loss function that calls net, taking the full batch as input:

# minimising classification error
def loss_fn(net, batch):
    X, y = batch
    logits = net(X)
    loss = F.nll_loss(logits, y)

    pred = logits.argmax(dim=-1, keepdim=True)
    accuracy = 100. * pred.eq(y.view_as(pred)).sum().item() / y.shape[0]
    return loss, accuracy

Optionally create a configuration object:

# see class definition for full list of parameters
cfg = TrainerConfig(
    exp_name = 'mnist-conv',
    batch_size = 64,
    learning_rate = 4e-4,
    nb_workers = 4,
    save_outputs = False,
    metric_names = ['accuracy']
)

Initialise the Trainer class:

trainer = Trainer(
    net=net,
    loss_fn=loss_fn,
    train_dataset=train_dataset,
    test_dataset=test_dataset,
    cfg=cfg
)

Call trainer.train() to begin the training loop

trainer.train() # Go!

See more examples here.

Motivation

I found myself repeating a lot of same structure in many of my deep learning projects. This project is the culmination of my efforts refining the typical structure of my projects into (what I hope to be) a wholly reusable and general-purpose library.

Additionally, there are many nice theoretical and engineering tricks that are available to deep learning researchers. Unfortunately, a lot of them are forgotten because they fall outside the typical workflow, despite them being very beneficial to include. Another goal of this project is to transparently include these tricks so they can be added and removed with minimal code change. Where it is sane to do so, some of these could be on by default.

Finally, I am guilty of forgetting to implement decent logging: both of standard output and of metrics. Logging of standard output is not hard, and is implemented using other libraries such as rich. However, metric logging is less obvious. I'd like to avoid larger dependencies such as tensorboard being an integral part of the project, so metrics will be logged to simple numpy arrays. The library will then provide functions to produce plots from these, or they can be used in another library.

TODO:

  • Make a todo.

References

Citations

Owner
Alex McKinney
Student at Durham University. I do a variety of things. I use Arch btw
Alex McKinney
Automatic number plate recognition using tech: Yolo, OCR, Scene text detection, scene text recognation, flask, torch

Automatic Number Plate Recognition Automatic Number Plate Recognition (ANPR) is the process of reading the characters on the plate with various optica

Meftun AKARSU 52 Dec 22, 2022
[AAAI22] Reliable Propagation-Correction Modulation for Video Object Segmentation

Reliable Propagation-Correction Modulation for Video Object Segmentation (AAAI22) Preview version paper of this work is available at: https://arxiv.or

Xiaohao Xu 70 Dec 04, 2022
Depth image based mouse cursor visual haptic

Depth image based mouse cursor visual haptic How to run it. Install pyqt5. Install python modules pip install Pillow pip install numpy For illustrati

Xiong Jie 17 Dec 20, 2022
Google Brain - Ventilator Pressure Prediction

Google Brain - Ventilator Pressure Prediction https://www.kaggle.com/c/ventilator-pressure-prediction The ventilator data used in this competition was

Samuele Cucchi 1 Feb 11, 2022
Multi-Agent Reinforcement Learning (MARL) method to learn scalable control polices for multi-agent target tracking.

scalableMARL Scalable Reinforcement Learning Policies for Multi-Agent Control CD. Hsu, H. Jeong, GJ. Pappas, P. Chaudhari. "Scalable Reinforcement Lea

Christopher Hsu 17 Nov 17, 2022
[ICCV 2021] Relaxed Transformer Decoders for Direct Action Proposal Generation

RTD-Net (ICCV 2021) This repo holds the codes of paper: "Relaxed Transformer Decoders for Direct Action Proposal Generation", accepted in ICCV 2021. N

Multimedia Computing Group, Nanjing University 80 Nov 30, 2022
With this package, you can generate mixed-integer linear programming (MIP) models of trained artificial neural networks (ANNs) using the rectified linear unit (ReLU) activation function

With this package, you can generate mixed-integer linear programming (MIP) models of trained artificial neural networks (ANNs) using the rectified linear unit (ReLU) activation function. At the momen

ChemEngAI 40 Dec 27, 2022
The ICS Chat System project for NYU Shanghai Fall 2021

ICS_Chat_System [Catenger] This is the ICS Chat System project for NYU Shanghai Fall 2021 Creators: Shavarsh Melikyan, Skyler Chen and Arghya Sarkar,

1 Dec 20, 2021
Using Streamlit to host a multi-page tool with model specs and classification metrics, while also accepting user input values for prediction.

Predicitng_viability Using Streamlit to host a multi-page tool with model specs and classification metrics, while also accepting user input values for

Gopalika Sharma 1 Nov 08, 2021
Source Code for AAAI 2022 paper "Graph Convolutional Networks with Dual Message Passing for Subgraph Isomorphism Counting and Matching"

Graph Convolutional Networks with Dual Message Passing for Subgraph Isomorphism Counting and Matching This repository is an official implementation of

HKUST-KnowComp 13 Sep 08, 2022
Using a Seq2Seq RNN architecture via TensorFlow to predict future Bitcoin prices

Recurrent Bitcoin Network A Data Science Thesis Project About This repository contains the source code for implementing Bitcoin price prediciton using

Frizu 6 Sep 08, 2022
🐦 Quickly annotate data from the comfort of your Jupyter notebook

🐦 pigeon - Quickly annotate data on Jupyter Pigeon is a simple widget that lets you quickly annotate a dataset of unlabeled examples from the comfort

Anastasis Germanidis 647 Jan 05, 2023
Mscp jamf - Build compliance in jamf

mscp_jamf Build compliance in Jamf. This will build the following xml pieces to

Bob Gendler 3 Jul 25, 2022
Exploring Cross-Image Pixel Contrast for Semantic Segmentation

Exploring Cross-Image Pixel Contrast for Semantic Segmentation Exploring Cross-Image Pixel Contrast for Semantic Segmentation, Wenguan Wang, Tianfei Z

Tianfei Zhou 510 Jan 02, 2023
The code succinctly shows how our ensemble learning based on deep learning CNN is used for LAM-avulsion-diagnosis.

deep-learning-LAM-avulsion-diagnosis The code succinctly shows how our ensemble learning based on deep learning CNN is used for LAM-avulsion-diagnosis

1 Jan 12, 2022
Computational Pathology Toolbox developed by TIA Centre, University of Warwick.

TIA Toolbox Computational Pathology Toolbox developed at the TIA Centre Getting Started All Users This package is for those interested in digital path

Tissue Image Analytics (TIA) Centre 156 Jan 08, 2023
This repository contains code for the paper "Disentangling Label Distribution for Long-tailed Visual Recognition", published at CVPR' 2021

Disentangling Label Distribution for Long-tailed Visual Recognition (CVPR 2021) Arxiv link Blog post This codebase is built on Causal Norm. Install co

Hyperconnect 85 Oct 18, 2022
Jupyter Dock is a set of Jupyter Notebooks for performing molecular docking protocols interactively, as well as visualizing, converting file formats and analyzing the results.

Molecular Docking integrated in Jupyter Notebooks Description | Citation | Installation | Examples | Limitations | License Table of content Descriptio

Angel J. Ruiz Moreno 173 Dec 25, 2022
Prometheus exporter for Cisco Unified Computing System (UCS) Manager

prometheus-ucs-exporter Overview Use metrics from the UCS API to export relevant metrics to Prometheus This repository is a fork of Drew Stinnett's or

Marshall Wace 6 Nov 07, 2022
Training PSPNet in Tensorflow. Reproduce the performance from the paper.

Training Reproduce of PSPNet. (Updated 2021/04/09. Authors of PSPNet have provided a Pytorch implementation for PSPNet and their new work with support

Li Xuhong 126 Jul 13, 2022