GradAttack is a Python library for easy evaluation of privacy risks in public gradients in Federated Learning

Overview

GradAttack

GradAttack CI

GradAttack is a Python library for easy evaluation of privacy risks in public gradients in Federated Learning, as well as corresponding mitigation strategies. The current version focuses on the gradient inversion attack in the image classification task, which recovers private images from public gradients.

Motivation

Recent research shows that sending gradients instead of data in Federated Learning can leak private information (see this growing list of attack paper). These attacks demonstrate that an adversary eavesdropping on a client’s communications (i.e. observing the global modelweights and client update) can accurately reconstruct a client’s private data using a class of techniques known as “gradient inversion attacks", which raise serious concerns about such privacy leakage.

To counter these attacks, researchers have proposed defense mechanisms (see this growing list of defense paper). We are developing this framework to evaluate different defense mechanisms against state-of-the-art attacks.

Why GradAttack?

There are lots of reasons to use GradAttack:

  • 😈   Evaluate the privacy risk of your Federated Learning pipeline by running on it various attacks supported by GradAttack

  • 💊   Enhance the privacy of your Federated Learning pipeline by applying defenses supported by GradAttack in a plug-and-play fashion

  • 🔧   Research and develop new gradient attacks and defenses by reusing the simple and extensible APIs in GradAttack

Slack Channel

For help and realtime updates related to GradAttack, please join the GradAttack Slack!

Installation

You may install GradAttack directly from PyPi using pip:

pip install gradattack

You can also install directly from the source for the latest features:

git clone https://github.com/Princeton-SysML/GradAttack
cd GradAttack
pip install -e .

Getting started

To evaluate your model's privacy leakage against the gradient inversion attack, all you need to do is to:

  1. Define your deep learning pipeline
datamodule = CIFAR10DataModule()
model = create_lightning_module(
        'ResNet18',
        training_loss_metric=loss,
        **hparams,
    )
trainer = pl.Trainer(
        gpus=devices,
        check_val_every_n_epoch=1,
        logger=logger,
        max_epochs=args.n_epoch,
        callbacks=[early_stop_callback],
    )
pipeline = TrainingPipeline(model, datamodule, trainer)
  1. (Optional) Apply defenses to the pipeline
defense_pack = DefensePack(args, logger)
defense_pack.apply_defense(pipeline)
  1. Run training with the pipeline (see detailed example scripts and bashes in examples)
pipeline.run()
pipeline.test()

You may use the tensorboard logs to track your training and to compare results of different runs:

tensorboard --logdir PATH_TO_TRAIN_LOGS

Example of training logs

  1. Run attack on the pipeline (see detailed example scripts and bashes in examples)
# Fetch a victim batch and define an attack instance
example_batch = pipeline.get_datamodule_batch()
batch_gradients, step_results = pipeline.model.get_batch_gradients(
        example_batch, 0)
batch_inputs_transform, batch_targets_transform = step_results[
    "transformed_batch"]
attack_instance = GradientReconstructor(
    pipeline,
    ground_truth_inputs=batch_inputs_transform,
    ground_truth_gradients=batch_gradients,
    ground_truth_labels=batch_targets_transform,
)

# Define the attack instance and launch the attack
attack_trainer = pl.Trainer(
    max_epochs=10000,
)
attack_trainer.fit(attack_instance,)

You may use the tensorboard logs to track your attack and to compare results of different runs:

tensorboard --logdir PATH_TO_ATTACK_LOGS

Example of training logs

  1. Evalute the attack results (see examples)
python examples/calc_metric.py --dir PATH_TO_ATTACK_RESULTS

Contributing to GradAttack

GradAttack is currently in an "alpha" stage in which we are working to improve its capabilities and design.

Contributions are welcome! See the contributing guide for detailed instructions on how to contribute to our project.

Citing GradAttack

If you want to use GradAttack for your research (much appreciated!), you can cite it as follows:

@inproceedings{huang2021evaluating,
  title={Evaluating Gradient Inversion Attacks and Defenses in Federated Learning},
  author={Huang, Yangsibo and Gupta, Samyak and Song, Zhao and Li, Kai and Arora, Sanjeev},
  booktitle={NeurIPS},
  year={2021}
}

Acknowledgement

This project is supported in part by Ma Huateng Foundation, Schmidt Foundation, NSF, Simons Foundation, ONR and DARPA/SRC. Yangsibo Huang and Samyak Gupta are supported in part by the Princeton Graduate Fellowship. We would like to thank Quanzheng Li, Xiaoxiao Li, Hongxu Yin and Aoxiao Zhong for helpful discussions, and members of Kai Li’s and Sanjeev Arora’s research groups for comments on early versions of this library.

Example for AUAV 2022 with obstacle avoidance.

AUAV 2022 Sample This is a sample PX4 based quadrotor path planning framework based on Ubuntu 20.04 and ROS noetic for the IEEE Autonomous UAS 2022 co

James Goppert 11 Sep 16, 2022
PyTorch implementation of the Transformer in Post-LN (Post-LayerNorm) and Pre-LN (Pre-LayerNorm).

Transformer-PyTorch A PyTorch implementation of the Transformer from the paper Attention is All You Need in both Post-LN (Post-LayerNorm) and Pre-LN (

Jared Wang 22 Feb 27, 2022
Deep Latent Force Models

Deep Latent Force Models This repository contains a PyTorch implementation of the deep latent force model (DLFM), presented in the paper, Compositiona

Tom McDonald 5 Oct 26, 2022
A tool to visualise the results of AlphaFold2 and inspect the quality of structural predictions

AlphaFold Analyser This program produces high quality visualisations of predicted structures produced by AlphaFold. These visualisations allow the use

Oliver Powell 3 Nov 13, 2022
An SE(3)-invariant autoencoder for generating the periodic structure of materials

Crystal Diffusion Variational AutoEncoder This software implementes Crystal Diffusion Variational AutoEncoder (CDVAE), which generates the periodic st

Tian Xie 94 Dec 10, 2022
10th place solution for Google Smartphone Decimeter Challenge at kaggle.

Under refactoring 10th place solution for Google Smartphone Decimeter Challenge at kaggle. Google Smartphone Decimeter Challenge Global Navigation Sat

12 Oct 25, 2022
IEEE Winter Conference on Applications of Computer Vision 2022 Accepted

SSKT(Accepted WACV2022) Concept map Dataset Image dataset CIFAR10 (torchvision) CIFAR100 (torchvision) STL10 (torchvision) Pascal VOC (torchvision) Im

1 Nov 17, 2022
This is an official pytorch implementation of Lite-HRNet: A Lightweight High-Resolution Network.

Lite-HRNet: A Lightweight High-Resolution Network Introduction This is an official pytorch implementation of Lite-HRNet: A Lightweight High-Resolution

HRNet 675 Dec 25, 2022
Code for NeurIPS 2021 paper "Curriculum Offline Imitation Learning"

README The code is based on the ILswiss. To run the code, use python run_experiment.py --nosrun -e your YAML file -g gpu id Generally, run_experim

ApexRL 12 Mar 19, 2022
Library for implementing reservoir computing models (echo state networks) for multivariate time series classification and clustering.

Framework overview This library allows to quickly implement different architectures based on Reservoir Computing (the family of approaches popularized

Filippo Bianchi 249 Dec 21, 2022
An Implicit Function Theorem (IFT) optimizer for bi-level optimizations

iftopt An Implicit Function Theorem (IFT) optimizer for bi-level optimizations. Requirements Python 3.7+ PyTorch 1.x Installation $ pip install git+ht

The Money Shredder Lab 2 Dec 02, 2021
Source code for Acorn, the precision farming rover by Twisted Fields

Acorn precision farming rover This is the software repository for Acorn, the precision farming rover by Twisted Fields. For more information see twist

Twisted Fields 198 Jan 02, 2023
A Comparative Review of Recent Kinect-Based Action Recognition Algorithms (TIP2020, Matlab codes)

A Comparative Review of Recent Kinect-Based Action Recognition Algorithms This repo contains: the HDG implementation (Matlab codes) for 'Analysis and

Lei Wang 5 Oct 22, 2022
COIN the currently largest dataset for comprehensive instruction video analysis.

COIN Dataset COIN is the currently largest dataset for comprehensive instruction video analysis. It contains 11,827 videos of 180 different tasks (i.e

86 Dec 28, 2022
MEND: Model Editing Networks using Gradient Decomposition

MEND: Model Editing Networks using Gradient Decomposition Setup Environment This codebase uses Python 3.7.9. Other versions may work as well. Create a

Eric Mitchell 141 Dec 02, 2022
Pomodoro timer that acknowledges the inexorable, infinite passage of time

Pomodouroboros Most pomodoro trackers assume you're going to start them. But time and tide wait for no one - the great pomodoro of the cosmos is cold

Glyph 66 Dec 13, 2022
Bio-Computing Platform Featuring Large-Scale Representation Learning and Multi-Task Deep Learning “螺旋桨”生物计算工具集

English | 简体中文 Latest News 2021.10.25 Paper "Docking-based Virtual Screening with Multi-Task Learning" is accepted by BIBM 2021. 2021.07.29 PaddleHeli

633 Jan 04, 2023
Official code of ICCV2021 paper "Residual Attention: A Simple but Effective Method for Multi-Label Recognition"

CSRA This is the official code of ICCV 2021 paper: Residual Attention: A Simple But Effective Method for Multi-Label Recoginition Demo, Train and Vali

163 Dec 22, 2022
Telegram chatbot created with deep learning model (LSTM) and telebot library.

Telegram chatbot Telegram chatbot created with deep learning model (LSTM) and telebot library. Description This program will allow you to create very

1 Jan 04, 2022
Source code for the GPT-2 story generation models in the EMNLP 2020 paper "STORIUM: A Dataset and Evaluation Platform for Human-in-the-Loop Story Generation"

Storium GPT-2 Models This is the official repository for the GPT-2 models described in the EMNLP 2020 paper [STORIUM: A Dataset and Evaluation Platfor

Nader Akoury 27 Dec 20, 2022