[ICCV'21] Pri3D: Can 3D Priors Help 2D Representation Learning?

Overview

Pri3D: Can 3D Priors Help 2D Representation Learning? [ICCV 2021]

Pri3D

Pri3D leverages 3D priors for downstream 2D image understanding tasks: during pre-training, we incorporate view-invariant and geometric priors from color-geometry information given by RGB-D datasets, imbuing geometric priors into learned features. We show that these 3D-imbued learned features can effectively transfer to improved performance on 2D tasks such as semantic segmentation, object detection, and instance segmentation.

[ICCV 2021 Paper] [Video]

Environment

This codebase was tested with the following environment configurations.

Installation

We use conda for the installation process:

# Install virtual env and PyTorch
conda create -n sparseconv051 python=3.8
conda activate sparseconv051
conda install pytorch==1.7.1 torchvision==0.8.2 cudatoolkit=11.0 -c pytorch

# Complie and install MinkowskiEngine 0.5.1.
conda install mkl mkl-include -c intel
wget https://github.com/NVIDIA/MinkowskiEngine/archive/refs/tags/v0.5.1.zip
cd MinkowskiEngine-0.5.1 
python setup.py install

Next, clone the Pri3D repository and install the requirement from the root directory.

git clone https://github.com/Sekunde/Pri3D.git
cd Pri3D
pip install -r requirements.txt

Training Mask R-CNN models requires Detectron2.

[Logging] Pri3D will create runs for logging training curves and configurations in the project named pri3d in Weights & Biases. Additionally, checkpoints and a txt log file will be stored in the specified output folder. You will be asked to input username and password of Weights & Biases in the first time to run the training code.

[Optional] If you want to pre-train the view-consistent contrastive loss on MegaDepth data, you need to install COLMAP, see their installation ducomentation.

Pre-training Section

Data Pre-processing

Prepare ScanNet Pre-training Data

For pre-training view-invariant contrastive loss, pairs of ScanNet frames data can be generated by the following code (need to change the TARGET and SCANNET_DIR accordingly in the script). This piece of code first extracts pointcloud from partial frames, and then computes a filelist of overlapped partial frames for each scene.

cd pretrain/data_preprocess/scannet
./preprocess.sh

Then a combined txt file called overlap30.txt of filelists of each scene can be generated by running the following code. This overlap30.txt should be put into folder TARGET/splits.

cd pretrain/data_preprocess/scannet
python generate_list.py --target_dir TARGET

For pre-training geometric-prior, we first generate point cloud of ScanNet reconstruction. This can be done by running following code. We use SCANNET_DATA to refer where scannet data lives and SCANNET_OUT_PATH to denote the output path of processed scannet data.

# Edit path variables: SCANNET_DATA and SCANNET_OUT_PATH
cd pretrain/data_preprocess/scannet
python collect_indoor3d_data.py --input SCANNET_DATA --output SCANNET_OUT_PATH
# copy the filelists
cp -r split SCANNET_OUT_PATH

Afterwards, we further generate chunk bbox that is used for cropping chunks by running following code. TARGET points to where the previously generated pairs of ScanNet frames are located.

cd pretrain/data_preprocess/scannet/
python chunk.py --base TARGET

Prepare MegaDepth Pre-training Data

We borrow the MegaDepth data generation code from D2-Net. After installing COLMAP and downloading the MegaDepth Dataset(including SfM models), you can run the following code to pre-process data.

cd pretrain/data_preprocess/megadepth/
python undistort_reconstructions.py --colmap_path /path/to/colmap/executable --base_path /path/to/megadepth
bash preprocess_undistorted_megadepth.sh /path/to/megadepth /path/to/output/folder

We also provide visualization of the MegaDepth data.

Prepare KITTI Pre-training Data

Download KITTI Dataset and run the following code to pre-process the data. This will create an overlap.txt file indexing the pairs of frames as well as a mapping folder storing the coordinates mapping between frames located in /path/to/kitti/dataset.

cd pretrain/data_preprocess/kitti/
python kitti_process.py --input /path/to/kitti/dataset

Pre-training on Different Datasets

To pre-train on different datasets, we provide the scripts to train Pri3D with 8 GPUs (batch_size=64, 8 per GPU) on a single server under folder pretrain/pri3d/scripts. Pri3D can also be pre-trained on the server with fewer GPUs, e.g. 4 GPUs by setting train.batsh_size=32 (8 per GPUs) and optimizer.accumulate_step=2 (effective batch_size=32x2=64) to accumulate gradients. The code is competitable with facebook hydra. Our codebase enables multi-gpu training with distributed data parallel (DDP) module in pytorch.

Pre-train on ScanNet

TARGET and SCANNET_OUT_PATH refer to the pre-processed data locations that are defined in Prepare ScanNet Pre-train Data.

cd pretrain/pri3d
export DATAPATH=TARGET 
# if pre-train with geometric-contrastive loss
export POINTCLOUD_PATH=SCANNET_OUT_PATH
# Pretrain with view-invariant loss (ResNet50 backbone)
LOG_DIR=/path/to/log/folder BACKBONE=Res50UNet VIEW=True scripts/scannet.sh
# Pretrain with geometric-contrastive loss (ResNet50 backbone)
LOG_DIR=/path/to/log/folder BACKBONE=Res50UNet GEO=True scripts/scannet.sh
# Pretrain with view-invariant and geometric-contrastive loss (ResNet50 backbone)
LOG_DIR=/path/to/log/folder BACKBONE=Res50UNet VIEW=True GEO=True scripts/scannet.sh
# Pretrain with view-invariant loss (ResNet18 backbone)
LOG_DIR=/path/to/log/folder BACKBONE=Res18UNet VIEW=True scripts/scannet.sh

Pre-train on MegaDepth

cd pretrain/pri3d
export DATAPATH=/path/to/megadepth/processed/data/folder
# Pretrain with view-invariant loss (ResNet50 backbone)
LOG_DIR=/path/to/log/folder BACKBONE=Res50UNet scripts/megadepth.sh
# Pretrain with view-invariant loss (ResNet18 backbone)
LOG_DIR=/path/to/log/folder BACKBONE=Res18UNet scripts/megadepth.sh

Pre-train on KITTI

cd pretrain/pri3d
export DATAPATH=KITTI_PATH
# Pretrain with view-invariant loss (ResNet50 backbone)
LOG_DIR=/path/to/log/folder BACKBONE=Res50UNet scripts/kitti.sh
# Pretrain with view-invariant loss (ResNet18 backbone)
LOG_DIR=/path/to/log/folder BACKBONE=Res18UNet scripts/kitti.sh

Downstream Task Section

Semantic Segmentation on ScanNet

Download scannet_frames_25k and unzip to SCANNET_SEMSEG. It should have following structures.

SCANNET_SEMSEG/
    scene0000_00/
        color/
	depth/
	instance/
	label/
	pose/
	intrinsics_color.txt
	intrinsics_depth.txt
    scene0000_01/
    ...

Export path SCANNET_SEMSEG to enviromental variable $DATAPATH and run the code to train the ResUNet models.

cd downstream/semseg/unet
export DATAPATH=SCANNET_SEMSEG
export PHASE=train
# train the model with ResNet50 backbone, initialized with ImageNet pre-trained model
LOG_DIR=/path/to/log/folder BACKBONE=Res50UNet INIT=imagenet scripts/scannet.sh
# train the model with ResNet50 backbone, train from scratch 
LOG_DIR=/path/to/log/folder BACKBONE=Res50UNet INIT=scratch scripts/scannet.sh
# train the model with ResNet50 backbone, train from scratch with 20% data.
LOG_DIR=/path/to/log/folder BACKBONE=Res50UNet INIT=scratch PHASE=train20 scripts/scannet.sh
# train the model with ResNet50 backbone, initialized with specified pre-trained model
LOG_DIR=/path/to/log/folder BACKBONE=Res50UNet INIT=/path/to/saved/model scripts/scannet.sh
# train the model with ResNet18 backbone, initialized with ImageNet pre-trained model
LOG_DIR=/path/to/log/folder BACKBONE=Res18UNet INIT=imagenet scripts/scannet.sh

Similarly, export environmental variable and run the code to train PSPNet and DeepLabV3/V3+ models.

# train PSPNet (ResNet50 as backbones)
cd downstream/semseg/pspnet
export DATAPATH=SCANNET_SEMSEG
# train PSPNet with ResNet50 backbone, initialized with ImageNet pre-trained model
LOG_DIR=/path/to/log/folder INIT=imagenet scripts/scannet.sh
# train PSPNet with ResNet50 backbone, initialized with specified pre-trained model
LOG_DIR=/path/to/log/folder INIT=/path/to/checkpoint scripts/scannet.sh

# train DeepLabV3 and DeepLabV3+ models (ResNet50 as backbones)
cd downstream/semseg/deeblabv3
export DATAPATH=SCANNET_SEMSEG
# train DeepLabV3 with ResNet50 backbone, initialized with ImageNet pre-trained model
LOG_DIR=/path/to/log/folder INIT=imagenet scripts/train_scannet_deeplapv3.sh
# train DeepLabV3+ with ResNet50 backbone, initialized with ImageNet pre-trained model
LOG_DIR=/path/to/log/folder INIT=imagenet scripts/train_scannet_deeplapv3plus.sh
# train DeepLabV3+ with ResNet50 backbone, initialized with specified pre-trained model
LOG_DIR=/path/to/log/folder INIT=/path/to/checkpoint scripts/train_scannet_deeplabv3plus.sh

Model Zoo

PSPNet and DeepLabV3/V3+ use checkpoints in torchvision format, thus we provide the code for converting from our Pri3D pre-trained checkpoint to torchvision checkpoint.

cd downstream/conversion
python pri3d_to_torchvision.py /path/to/pre-trained/pri3d/checkpoint /path/to/output/checkpoint/in/torchvison/format

The provided pre-trained models for PSPNet and DeepLabV3/V3+ are already converted to torchvision format.

Training Data mIoU (val) Backbone Pre-trained Model (on ScanNet) Curves Logs
100% scenes 61.7 ResNet50 Pri3D (View + Geo) link link
100% scenes 55.7 ResNet18 Pri3D (View + Geo) link link
100% scenes 62.8 PSPNet Pri3D (View + Geo) link link
100% scenes 61.3 DeepLabV3 Pri3D (View + Geo) link link
100% scenes 61.6 DeepLabV3+ Pri3D (View + Geo) link link
80% scenes 60.3 ResNet50 Pri3D (View + Geo) link link
60% scenes 58.9 ResNet50 Pri3D (View + Geo) link link
40% scenes 56.2 ResNet50 Pri3D (View + Geo) link link
20% scenes 51.5 ResNet50 Pri3D (View + Geo) link link

Semantic Segmentation on KITTI

Download and unzip label for semantic and instance segmentation. unzip and organize the data folder as following structures.

KITTI_SESEG/
    image_2/
    instance/
    semantic/
    semantic_rgb/

Use following code snippets to train semantic segmentation models on KITTI data.

cd downstream/semseg
export DATAPATH=KITTI_SEMSEG
# train the model with ResNet50 backbone, initialized with ImageNet pre-trained model
LOG_DIR=/path/to/log/folder BACKBONE=Res50UNet INIT=imagenet scripts/kitti.sh
# train the model with ResNet50 backbone, train from scratch 
LOG_DIR=/path/to/log/folder BACKBONE=Res50UNet INIT=scratch scripts/kitti.sh
# train the model with ResNet50 backbone, initialized with specified pre-trained model
LOG_DIR=/path/to/log/folder BACKBONE=Res50UNet INIT=/path/to/saved/model scripts/kitti.sh
# train the model with ResNet18 backbone, initialized with ImageNet pre-trained model
LOG_DIR=/path/to/log/folder BACKBONE=Res18UNet INIT=imagenet scripts/kitti.sh

Model Zoo

Training Data mIoU (val) Backbone Pre-trained Model Curves Logs
100% scenes 33.2 ResNet50 Pri3D (View) on KITTI link link

Semantic Segmentation on NYUv2

Download NYUv2 Dataset and unzip it to path NYUv2_SEMSEG.

cd downstream/semseg
export DATAPATH=NYUv2_SEMSEG
# train the model with ResNet50 backbone, initialized with ImageNet pre-trained model
LOG_DIR=/path/to/log/folder BACKBONE=Res50UNet INIT=imagenet scripts/nyuv2.sh
# train the model with ResNet50 backbone, train from scratch 
LOG_DIR=/path/to/log/folder BACKBONE=Res50UNet INIT=scratch scripts/nyuv2.sh
# train the model with ResNet50 backbone, initialized with specified pre-trained model
LOG_DIR=/path/to/log/folder BACKBONE=Res50UNet INIT=/path/to/saved/model scripts/nyuv2.sh
# train the model with ResNet18 backbone, initialized with ImageNet pre-trained model
LOG_DIR=/path/to/log/folder BACKBONE=Res18UNet INIT=imagenet scripts/nyuv2.sh

Model Zoo

Training Data mIoU (val) Backbone Pre-trained Model (on ScanNet) Curves Logs
100% scenes 54.7 ResNet50 Pri3D (View + Geo) link link
100% scenes 47.6 ResNet50 MoCoV2-supIN->SN link link

Semantic Segmentation on Cityscapes

Download gtFine_trainvaltest and leftImg8bit_trainvaltest. Unzip and organize as following data structures.

CityScapes_SEMSEG/
    gtFine/
    leftImg8bit/

Export the data path (CityScapes_SEMSEG) to $DATAPATH environmental variable and train the models.

cd downstream/semseg
export DATAPATH=Cityscapes_SEMSEG
# train the model with ResNet50 backbone, initialized with ImageNet pre-trained model
LOG_DIR=/path/to/log/folder BACKBONE=Res50UNet INIT=imagenet scripts/cityscapes.sh
# train the model with ResNet50 backbone, train from scratch 
LOG_DIR=/path/to/log/folder BACKBONE=Res50UNet INIT=scratch scripts/cityscapes.sh
# train the model with ResNet50 backbone, initialized with specified pre-trained model
LOG_DIR=/path/to/log/folder BACKBONE=Res50UNet INIT=/path/to/saved/model scripts/cityscapes.sh
# train the model with ResNet18 backbone, initialized with ImageNet pre-trained model
LOG_DIR=/path/to/log/folder BACKBONE=Res18UNet INIT=imagenet scripts/cityscapes.sh

Model Zoo

Training Data mIoU (val) Backbone Pre-trained Model Curves Logs
100% scenes 56.3 ResNet50 Pri3D (View) on KITTI link link
100% scenes 55.2 ResNet50 Pri3D (View) on MegaDepth link link

Instance Segmentation/Detection on ScanNet

For training an instance segmentation/detection model, a COCO format json file of annotation needs to be generated. We provide code to convert the ScanNet Annotation into COCO format (json file). Path SCANNET_SEMSEG refers to the location of ScanNet semantic segmentation data.

cd downstream/insseg/dataset
# generate json file of annotations for training
python scanet2coco.py --scannet_path SCANNET_SEMSEG --phase train
# generate json file of annotations for validation
python scanet2coco.py --scannet_path SCANNET_SEMSEG --phase val
# generate json file of annotations for training on 20%,40%,60%,80% data.
python scanet2coco.py --scannet_path SCANNET_SEMSEG --phase train20
python scanet2coco.py --scannet_path SCANNET_SEMSEG --phase train40
python scanet2coco.py --scannet_path SCANNET_SEMSEG --phase train60
python scanet2coco.py --scannet_path SCANNET_SEMSEG --phase train80

The code above generates json files, such as scannet_train.coco.json and scannet_val.coco.json. After having json files, the following code will train Mask R-CNN models.

cd downstream/insseg
export JSON_PATH=/path/to/json/file
export IMAGE_PATH=SCANNET_SEMSEG
# train the model with ImageNet pre-trained model 
LOG_DIR=/path/to/log/folder INIT=imagenet sbatch script/train_scannet.sh
# train the model with pre-trained model (remove 'sbatch' if training on a local machine)
LOG_DIR=/path/to/log/folder INIT=/path/to/model sbatch script/train_scannet.sh
# train the model on ScanNet 20% data
JSON_PATH=/path/to/scannet_train20.coco.json LOG_DIR=/path/to/log/folder INIT=imagenet script/train_scannet.sh

Model Zoo

Detectron2 requires a specific checkpoint format, thus we provide the code for converting from our Pri3D pre-trained checkpoint to the required checkpoint format.

cd downstream/conversion
python pri3d_to_torchvision.py /path/to/pri3d/format/checkpoint /path/to//torchvison/format/checkpoint
ptthon torchvision_to_detectron.py /path/to//torchvison/format/checkpoint /path/to/detectron/format/checkpoint

The provided pre-trained models in the following are already converted to detectron2 checkpoints.

Data [email protected] (bbox) [email protected] (segm) Backbone Pre-trained Model (on ScanNet) Curves Logs
100% 44.5 35.8 ResNet50 Pri3D (View + Geo) link link
100% 43.5 33.9 ResNet50 MoCoV2-supIN->SN link link

Instance Segmentation/Detection on NYUv2

Similarly to ScanNet, we provide code to convert the NYUv2 Annotation into COCO format (json files). Path NYUv2_SEMSEG refers to the location of NYUv2 semantic segmentation data.

cd downstream/insseg/dataset
# generate json file of annotations for training
python nyu2coco.py --nyu_path NYUv2_SEMSEG --phase train
# generate json file of annotations for validation
python nyu2coco.py --scannet_path NYUv2_SEMSEG --phase val

The code above generates json files, such as nyu_train.coco.json and nyu_val.coco.json. After having json files, the following code will train Mask R-CNN models.

cd downstream/insseg
export JSON_PATH=/path/to/json/file
export IMAGE_PATH=NYUv2_SEMSEG
# train the model with ImageNet pre-trained model 
LOG_DIR=/path/to/log/folder INIT=imagenet sbatch script/train_nyu.sh
# train the model with pre-trained model (remove 'sbatch' if training on a local machine)
LOG_DIR=/path/to/log/folder INIT=/path/to/model sbatch script/train_nyu.sh

Model Zoo

The provided pre-trained models in the following are already converted to Detectron2 checkpoints (convert to detectrion2 shows how to convert from Pri3D checkpoint to Detectron2 format).

Data [email protected] (bbox) [email protected] (segm) Backbone Pre-trained Model (on ScanNet) Curves Logs
100% 34.0 29.5 ResNet50 Pri3D (View + Geo) link link
100% 31.1 27.2 ResNet50 MoCoV2-supIN->SN link link

Instance Segmentation/Detection on COCO

Download 2017 Train Images, 2017 Val Images and 2017 Train/Val Annotations. Unzip and organize them as following structures.

$DETECTRON2_DATASETS/
    coco/
        annotations/
	    instances_{train,val}2017.json
        {train,val}2017/		

Then using the following code to train instance segmentation/detection models.

cd downstream/insseg
export DETECTRON2_DATASETS=/path/to/datasets
# train the model with ImageNet pre-trained model 
LOG_DIR=/path/to/log/folder INIT=imagenet sbatch script/train_coco.sh
# train the model with pre-trained model (remove 'sbatch' if training on a local machine)
LOG_DIR=/path/to/log/folder INIT=/path/to/model sbatch script/train_coco.sh

Model Zoo

The provided pre-trained models in the following are already converted to Detectron2 checkpoints (convert to detectron2 shows how to convert from Pri3D checkpoint to Detectron2 format).

Data [email protected] (bbox) [email protected] (segm) Backbone Pre-trained Model (on ScanNet) Curves Logs
100% 60.6 57.5 ResNet50 Pri3D (View) link link

Citing our paper

@article{hou2021pri3d,
  title={Pri3D: Can 3D Priors Help 2D Representation Learning?},
  author={Hou, Ji and Xie, Saining and Graham, Benjamin and Dai, Angela and Nie{\ss}ner, Matthias},
  journal={arXiv preprint arXiv:2104.11225},
  year={2021}
}

License

Pri3D is relased under the MIT License. See the LICENSE file for more details.

Owner
Ji Hou
PhD Candidate in TUM
Ji Hou
Noether Networks: meta-learning useful conserved quantities

Noether Networks: meta-learning useful conserved quantities This repository contains the code necessary to reproduce experiments from "Noether Network

Dylan Doblar 33 Nov 23, 2022
NeuPy is a Tensorflow based python library for prototyping and building neural networks

NeuPy v0.8.2 NeuPy is a python library for prototyping and building neural networks. NeuPy uses Tensorflow as a computational backend for deep learnin

Yurii Shevchuk 729 Jan 03, 2023
Reinforcement learning algorithms in RLlib

raylab Reinforcement learning algorithms in RLlib and PyTorch. Installation pip install raylab Quickstart Raylab provides agents and environments to b

Ângelo 50 Sep 08, 2022
Image-Scaling Attacks and Defenses

Image-Scaling Attacks & Defenses This repository belongs to our publication: Erwin Quiring, David Klein, Daniel Arp, Martin Johns and Konrad Rieck. Ad

Erwin Quiring 163 Nov 21, 2022
Code for "Optimizing risk-based breast cancer screening policies with reinforcement learning"

Tempo: Optimizing risk-based breast cancer screening policies with reinforcement learning Introduction This repository was used to develop Tempo, as d

Adam Yala 12 Oct 11, 2022
DynamicViT: Efficient Vision Transformers with Dynamic Token Sparsification

DynamicViT: Efficient Vision Transformers with Dynamic Token Sparsification Created by Yongming Rao, Wenliang Zhao, Benlin Liu, Jiwen Lu, Jie Zhou, Ch

Yongming Rao 414 Jan 01, 2023
FIRA: Fine-Grained Graph-Based Code Change Representation for Automated Commit Message Generation

FIRA is a learning-based commit message generation approach, which first represents code changes via fine-grained graphs and then learns to generate commit messages automatically.

Van 21 Dec 30, 2022
Unofficial PyTorch implementation of Attention Free Transformer (AFT) layers by Apple Inc.

aft-pytorch Unofficial PyTorch implementation of Attention Free Transformer's layers by Zhai, et al. [abs, pdf] from Apple Inc. Installation You can i

Rishabh Anand 184 Dec 12, 2022
Code for the paper "PortraitNet: Real-time portrait segmentation network for mobile device" @ CAD&Graphics2019

PortraitNet Code for the paper "PortraitNet: Real-time portrait segmentation network for mobile device". @ CAD&Graphics 2019 Introduction We propose a

265 Dec 01, 2022
The backbone CSPDarkNet of YOLOX.

YOLOX-Backbone The backbone CSPDarkNet of YOLOX. In this project, you can enjoy: CSPDarkNet-S CSPDarkNet-M CSPDarkNet-L CSPDarkNet-X CSPDarkNet-Tiny C

Jianhua Yang 9 Aug 22, 2022
DC3: A Learning Method for Optimization with Hard Constraints

DC3: A learning method for optimization with hard constraints This repository is by Priya L. Donti, David Rolnick, and J. Zico Kolter and contains the

CMU Locus Lab 57 Dec 26, 2022
PyTorch implementation of ECCV 2020 paper "Foley Music: Learning to Generate Music from Videos "

Foley Music: Learning to Generate Music from Videos This repo holds the code for the framework presented on ECCV 2020. Foley Music: Learning to Genera

Chuang Gan 30 Nov 03, 2022
A Python package for time series augmentation

tsaug tsaug is a Python package for time series augmentation. It offers a set of augmentation methods for time series, as well as a simple API to conn

Arundo Analytics 278 Jan 01, 2023
Computationally efficient algorithm that identifies boundary points of a point cloud.

BoundaryTest Included are MATLAB and Python packages, each of which implement efficient algorithms for boundary detection and normal vector estimation

6 Dec 09, 2022
Open source repository for the code accompanying the paper 'PatchNets: Patch-Based Generalizable Deep Implicit 3D Shape Representations'.

PatchNets This is the official repository for the project "PatchNets: Patch-Based Generalizable Deep Implicit 3D Shape Representations". For details,

16 May 22, 2022
Finetuning Pipeline

KLUE Baseline Korean(한국어) KLUE-baseline contains the baseline code for the Korean Language Understanding Evaluation (KLUE) benchmark. See our paper fo

74 Dec 13, 2022
With this package, you can generate mixed-integer linear programming (MIP) models of trained artificial neural networks (ANNs) using the rectified linear unit (ReLU) activation function

With this package, you can generate mixed-integer linear programming (MIP) models of trained artificial neural networks (ANNs) using the rectified linear unit (ReLU) activation function. At the momen

ChemEngAI 40 Dec 27, 2022
A symbolic-model-guided fuzzer for TLS

tlspuffin TLS Protocol Under FuzzINg A symbolic-model-guided fuzzer for TLS Master Thesis | Thesis Presentation | Documentation Disclaimer: The term "

69 Dec 20, 2022
A Multi-attribute Controllable Generative Model for Histopathology Image Synthesis

A Multi-attribute Controllable Generative Model for Histopathology Image Synthesis This is the pytorch implementation for our MICCAI 2021 paper. A Mul

Jiarong Ye 7 Apr 04, 2022
A simple baseline for the 2022 IEEE GRSS Data Fusion Contest (DFC2022)

DFC2022 Baseline A simple baseline for the 2022 IEEE GRSS Data Fusion Contest (DFC2022) This repository uses TorchGeo, PyTorch Lightning, and Segmenta

isaac 24 Nov 28, 2022