traiNNer is an open source image and video restoration (super-resolution, denoising, deblurring and others) and image to image translation toolbox based on PyTorch.

Overview

traiNNer

Python Version License DeepSource Issues PR's Accepted

traiNNer is an open source image and video restoration (super-resolution, denoising, deblurring and others) and image to image translation toolbox based on PyTorch.

Here you will find: boilerplate code for training and testing computer vision (CV) models, different methods and strategies integrated in a single pipeline and modularity to add and remove components as needed, including new network architectures and templates for different training strategies. The code is under a constant state of change, so if you find an issue or bug please open a issue, a discussion or write in one of the Discord channels for help.

Different from other repositories, here the focus is not only on repeating previous papers' results, but to enable more people to train their own models more easily, using their own custom datasets, as well as integrating new ideas to increase the performance of the models. For these reasons, a lot of the code is made in order to automatically take care of fixing potential issues, whenever possible.

Details of the currently supported architectures can be found here.

For a changelog and general list of features of this repository, check here.

Table of Contents

  1. Dependencies
  2. Codes
  3. Usage
  4. Pretrained models
  5. Datasets
  6. How to help

Dependencies

  • Python 3 (Recommend to use Anaconda)
  • PyTorch >= 0.4.0. PyTorch >= 1.7.0 required to enable certain features (SWA, AMP, others), as well as torchvision.
  • NVIDIA GPU + CUDA
  • Python packages: pip install numpy opencv-python
  • JSON files can be used for the configuration option files, but in order to use YAML, the PyYAML python package is also a dependency: pip install PyYAML

Optional Dependencies

Codes

This repository is a full framework for training different kinds of networks, with multiple enhancements and options. In ./codes you will find a more detailed explaination of the code framework ).

You will also find:

  1. Some useful scripts. More details in ./codes/scripts.
  2. Evaluation codes, e.g., PSNR/SSIM metric.

Additionally, it is complemented by other repositories like DLIP, that can be used in order to extract estimated kernels and noise patches from real images, using a modified KernelGAN and patches extraction code. Detailed instructions about how to use the estimated kernels are available here

Usage

Training

Data and model preparation

In order to train your own models, you will need to create a dataset consisting of images, and prepare these images, both considering IO constrains, as well as the task the model should target. Detailed data preparation can be seen in codes/data.

Pretrained models that can be used for fine-tuning are available.

Detailed instructions on how to train are also available.

Augmentations strategies for training real-world models (blind SR) like Real-SR, BSRGAN and Real-ESRGAN are provided via presets that define the blur, resizing and noise configurations, but many more augmentations are available to define custom training strategies.

How to Test

For simple testing

The recommended way to get started with some of the models produced by the training codes available in this repository is by getting the pretrained models to be tested and run them in the companion repository iNNfer, with the purpose of model inference.

Additionally, you can also use a GUI (for ESRGAN models, for video) or a smaller repo for inference (for ESRGAN, for video).

If you are interested in obtaining results that can automatically return evaluation metrics, it is also possible to do inference of batches of images and some additional options with the instructions in how to test.

Pretrained models

The most recent community pretrained models can be found in the Wiki, Discord channels (game upscale and animation upscale) and nmkd's models.

For more details about the original and experimental pretrained models, please see pretrained models.

You can put the downloaded models in the default experiments/pretrained_models directory and use them in the options files with the corresponding network architectures.

Model interpolation

Models that were trained using the same pretrained model or are derivates of the same pretrained model are able to be interpolated to combine the properties of both. The original author demostrated this by interpolating the PSNR pretrained model (which is not perceptually good, but results in smooth images) with the ESRGAN resulting models that have more details but sometimes is excessive to control a balance in the resulting images, instead of interpolating the resulting images from both models, giving much better results.

The capabilities of linearly interpolating models are also explored in "DNI": Deep Network Interpolation for Continuous Imagery Effect Transition (CVPR19) with very interesting results and examples. The script for interpolation can be found in the net_interp.py file. This is an alternative to create new models without additional training and also to create pretrained models for easier fine tuning. Below is an example of interpolating between a PSNR-oriented and a perceptual ESRGAN model (first row), and examples of interpolating CycleGAN style transfer models.

More details and explanations of interpolation can be found here in the Wiki.

Datasets

Many datasets are publicly available and used to train models in a way that can be benchmarked and compared with other models. You are also able to create your own datasets with your own images.

Any dataset can be augmented to expose the model to information that might not be available in the images, such a noise and blur. For this reason, a data augmentation pipeline has been added to the options in this repository. It is also possible to add other types of augmentations, such as Batch Augmentations to apply them to minibatches instead of single images. Lastly, if your dataset is small, you can make use of Differential Augmentations to allow the discriminator to extract more information from the available images and train better models. More information can be found in the augmentations document.

How to help

There are multiple ways to help this project. The first one is by using it and trying to train your own models. You can open an issue if you find any bugs or start a discussion if you have ideas, questions or would like to showcase your results.

If you would like to contribute in the form of adding or fixing code, you can do so by cloning this repo and creating a PR. Ideally, it's better for PR to be precise and not changing many parts of the code at the same time, so it can be reviewed and tested. If possible, open an issue or discussion prior to creating the PR and we can talk about any ideas.

You can also join the discord servers and share results and questions with other users.

Lastly, after it has been suggested many times before, now there are options to donate to show your support to the project and help stir it in directions that will make it even more useful. Below you will find those options that were suggested.

Patreon

Bitcoin Address: 1JyWsAu7aVz5ZeQHsWCBmRuScjNhCEJuVL

Ethereum Address: 0xa26AAb3367D34457401Af3A5A0304d6CbE6529A2


Additional Help

If you have any questions, we have a couple of discord servers (game upscale and animation upscale) where you can ask them and a Wiki with more information.


Acknowledgement

Code architecture is originally inspired by pytorch-cyclegan and the first version of BasicSR.

Gas detection for Raspberry Pi using ADS1x15 and MQ-2 sensors

Gas detection Gas detection for Raspberry Pi using ADS1x15 and MQ-2 sensors. Description The MQ-2 sensor can detect multiple gases (CO, H2, CH4, LPG,

Filip Š 15 Sep 30, 2022
Fast and scalable uncertainty quantification for neural molecular property prediction, accelerated optimization, and guided virtual screening.

Evidential Deep Learning for Guided Molecular Property Prediction and Discovery Ava Soleimany*, Alexander Amini*, Samuel Goldman*, Daniela Rus, Sangee

Alexander Amini 75 Dec 15, 2022
Semi-Supervised Signed Clustering Graph Neural Network (and Implementation of Some Spectral Methods)

SSSNET SSSNET: Semi-Supervised Signed Network Clustering For details, please read our paper. Environment Setup Overview The project has been tested on

Yixuan He 9 Nov 24, 2022
Implementation for Learning to Track with Object Permanence

Learning to Track with Object Permanence A video-based MOT approach capable of tracking through full occlusions: Learning to Track with Object Permane

Toyota Research Institute - Machine Learning 91 Jan 03, 2023
The official codes of our CVPR2022 paper: A Differentiable Two-stage Alignment Scheme for Burst Image Reconstruction with Large Shift

TwoStageAlign The official codes of our CVPR2022 paper: A Differentiable Two-stage Alignment Scheme for Burst Image Reconstruction with Large Shift Pa

Shi Guo 32 Dec 15, 2022
Implementation of "Fast and Flexible Temporal Point Processes with Triangular Maps" (Oral @ NeurIPS 2020)

Fast and Flexible Temporal Point Processes with Triangular Maps This repository includes a reference implementation of the algorithms described in "Fa

Oleksandr Shchur 20 Dec 02, 2022
Code for ICCV 2021 paper "HuMoR: 3D Human Motion Model for Robust Pose Estimation"

Code for ICCV 2021 paper "HuMoR: 3D Human Motion Model for Robust Pose Estimation"

Davis Rempe 367 Dec 24, 2022
Few-Shot Object Detection via Association and DIscrimination

Few-Shot Object Detection via Association and DIscrimination Code release of our NeurIPS 2021 paper: Few-Shot Object Detection via Association and DIs

Cao Yuhang 49 Dec 18, 2022
Modifications of the official PyTorch implementation of StyleGAN3. Let's easily generate images and videos with StyleGAN2/2-ADA/3!

Alias-Free Generative Adversarial Networks (StyleGAN3) Official PyTorch implementation of the NeurIPS 2021 paper Alias-Free Generative Adversarial Net

Diego Porres 185 Dec 24, 2022
An essential implementation of BYOL in PyTorch + PyTorch Lightning

Essential BYOL A simple and complete implementation of Bootstrap your own latent: A new approach to self-supervised Learning in PyTorch + PyTorch Ligh

Enrico Fini 48 Sep 27, 2022
Official implementation of the paper Do pedestrians pay attention? Eye contact detection for autonomous driving

Do pedestrians pay attention? Eye contact detection for autonomous driving Official implementation of the paper Do pedestrians pay attention? Eye cont

VITA lab at EPFL 26 Nov 02, 2022
RGBD-Net - This repository contains a pytorch lightning implementation for the 3DV 2021 RGBD-Net paper.

[3DV 2021] We propose a new cascaded architecture for novel view synthesis, called RGBD-Net, which consists of two core components: a hierarchical depth regression network and a depth-aware generator

Phong Nguyen Ha 4 May 26, 2022
Implementation of ICLR 2020 paper "Revisiting Self-Training for Neural Sequence Generation"

Self-Training for Neural Sequence Generation This repo includes instructions for running noisy self-training algorithms from the following paper: Revi

Junxian He 45 Dec 31, 2022
HybVIO visual-inertial odometry and SLAM system

HybVIO A visual-inertial odometry system with an optional SLAM module. This is a research-oriented codebase, which has been published for the purposes

Spectacular AI 320 Jan 03, 2023
[CVPR 2022 Oral] Balanced MSE for Imbalanced Visual Regression https://arxiv.org/abs/2203.16427

Balanced MSE Code for the paper: Balanced MSE for Imbalanced Visual Regression Jiawei Ren, Mingyuan Zhang, Cunjun Yu, Ziwei Liu CVPR 2022 (Oral) News

Jiawei Ren 267 Jan 01, 2023
[ICCV 2021] Target Adaptive Context Aggregation for Video Scene Graph Generation

Target Adaptive Context Aggregation for Video Scene Graph Generation This is a PyTorch implementation for Target Adaptive Context Aggregation for Vide

Multimedia Computing Group, Nanjing University 44 Dec 14, 2022
Alpha-IoU: A Family of Power Intersection over Union Losses for Bounding Box Regression

Alpha-IoU: A Family of Power Intersection over Union Losses for Bounding Box Regression YOLOv5 with alpha-IoU losses implemented in PyTorch. Example r

Jacobi(Jiabo He) 147 Dec 05, 2022
Shōgun

The SHOGUN machine learning toolbox Unified and efficient Machine Learning since 1999. Latest release: Cite Shogun: Develop branch build status: Donat

Shōgun ML 2.9k Jan 04, 2023
Tandem Mass Spectrum Prediction with Graph Transformers

MassFormer This is the original implementation of MassFormer, a graph transformer for small molecule MS/MS prediction. Check out the preprint on arxiv

Röst Lab 13 Oct 27, 2022