Implementation for Learning to Track with Object Permanence

Overview

Learning to Track with Object Permanence

A video-based MOT approach capable of tracking through full occlusions:

Learning to Track with Object Permanence,
Pavel Tokmakov, Jie Li, Wolfram Burgard, Adrien Gaidon,
arXiv technical report (arXiv 2103.14258)

@inproceedings{tokmakov2021learning,
  title={Learning to Track with Object Permanence},
  author={Tokmakov, Pavel and Li, Jie and Burgard, Wolfram and Gaidon, Adrien},
  booktitle={ICCV},
  year={2021}
}

Abstract

Tracking by detection, the dominant approach for online multi-object tracking, alternates between localization and association steps. As a result, it strongly depends on the quality of instantaneous observations, often failing when objects are not fully visible. In contrast, tracking in humans is underlined by the notion of object permanence: once an object is recognized, we are aware of its physical existence and can approximately localize it even under full occlusions. In this work, we introduce an end-to-end trainable approach for joint object detection and tracking that is capable of such reasoning. We build on top of the recent CenterTrack architecture, which takes pairs of frames as input, and extend it to videos of arbitrary length. To this end, we augment the model with a spatio-temporal, recurrent memory module, allowing it to reason about object locations and identities in the current frame using all the previous history. It is, however, not obvious how to train such an approach. We study this question on a new, large-scale, synthetic dataset for multi-object tracking, which provides ground truth annotations for invisible objects, and propose several approaches for supervising tracking behind occlusions. Our model, trained jointly on synthetic and real data, outperforms the state of the art on KITTI and MOT17 datasets thanks to its robustness to occlusions.

Installation

Please refer to INSTALL.md for installation instructions.

Benchmark Evaluation and Training

After installation, follow the instructions in DATA.md to setup the datasets. Then check GETTING_STARTED.md to reproduce the results in the paper. We provide scripts for all the experiments in the experiments folder.

License

PermaTrack is developed upon CenterTrack. Both codebases are released under MIT License themselves. Some code of CenterTrack are from third-parties with different licenses, please check the CenterTrack repo for details. In addition, this repo uses py-motmetrics for MOT evaluation, nuscenes-devkit for nuScenes evaluation and preprocessing, and TAO codebase for computing Track AP. ConvGRU implementation is adopted from this repo. See NOTICE for detail. Please note the licenses of each dataset. Most of the datasets we used in this project are under non-commercial licenses.

Owner
Toyota Research Institute - Machine Learning
Toyota Research Institute - Machine Learning
This repository is maintained for the scientific paper tittled " Study of keyword extraction techniques for Electric Double Layer Capacitor domain using text similarity indexes: An experimental analysis "

kwd-extraction-study This repository is maintained for the scientific paper tittled " Study of keyword extraction techniques for Electric Double Layer

ping 543f 1 Dec 05, 2022
This Jupyter notebook shows one way to implement a simple first-order low-pass filter on sampled data in discrete time.

How to Implement a First-Order Low-Pass Filter in Discrete Time We often teach or learn about filters in continuous time, but then need to implement t

Joshua Marshall 4 Aug 24, 2022
Human Pose estimation with TensorFlow framework

Human Pose Estimation with TensorFlow Here you can find the implementation of the Human Body Pose Estimation algorithm, presented in the DeeperCut and

Eldar Insafutdinov 1.1k Dec 29, 2022
A criticism of a recent paper on buggy image downsampling methods in popular image processing and deep learning libraries.

A criticism of a recent paper on buggy image downsampling methods in popular image processing and deep learning libraries.

70 Jul 12, 2022
FCAF3D: Fully Convolutional Anchor-Free 3D Object Detection

FCAF3D: Fully Convolutional Anchor-Free 3D Object Detection This repository contains an implementation of FCAF3D, a 3D object detection method introdu

SamsungLabs 153 Dec 29, 2022
Adaptive Graph Convolution for Point Cloud Analysis

Adaptive Graph Convolution for Point Cloud Analysis This repository contains the implementation of AdaptConv for point cloud analysis. Adaptive Graph

64 Dec 21, 2022
Useful materials and tutorials for 110-1 NTU DBME5028 (Application of Deep Learning in Medical Imaging)

Useful materials and tutorials for 110-1 NTU DBME5028 (Application of Deep Learning in Medical Imaging)

7 Jun 22, 2022
The source code of "SIDE: Center-based Stereo 3D Detector with Structure-aware Instance Depth Estimation", accepted to WACV 2022.

SIDE: Center-based Stereo 3D Detector with Structure-aware Instance Depth Estimation The source code of our work "SIDE: Center-based Stereo 3D Detecto

10 Dec 18, 2022
A Broader Picture of Random-walk Based Graph Embedding

Random-walk Embedding Framework This repository is a reference implementation of the random-walk embedding framework as described in the paper: A Broa

Zexi Huang 23 Dec 13, 2022
ML-Ensemble – high performance ensemble learning

A Python library for high performance ensemble learning ML-Ensemble combines a Scikit-learn high-level API with a low-level computational graph framew

Sebastian Flennerhag 764 Dec 31, 2022
Real-time Neural Representation Fusion for Robust Volumetric Mapping

NeuralBlox: Real-Time Neural Representation Fusion for Robust Volumetric Mapping Paper | Supplementary This repository contains the implementation of

ETHZ ASL 106 Dec 24, 2022
kapre: Keras Audio Preprocessors

Kapre Keras Audio Preprocessors - compute STFT, ISTFT, Melspectrogram, and others on GPU real-time. Tested on Python 3.6 and 3.7 Why Kapre? vs. Pre-co

Keunwoo Choi 867 Dec 29, 2022
TeachMyAgent is a testbed platform for Automatic Curriculum Learning methods in Deep RL.

TeachMyAgent: a Benchmark for Automatic Curriculum Learning in Deep RL Paper Website Documentation TeachMyAgent is a testbed platform for Automatic Cu

Flowers Team 51 Dec 25, 2022
PyTorch/TorchScript compiler for NVIDIA GPUs using TensorRT

PyTorch/TorchScript compiler for NVIDIA GPUs using TensorRT

NVIDIA Corporation 1.8k Dec 30, 2022
A multi-mode modulator for multi-domain few-shot classification (ICCV)

A multi-mode modulator for multi-domain few-shot classification (ICCV)

Yanbin Liu 8 Apr 28, 2022
Official implementation of "Refiner: Refining Self-attention for Vision Transformers".

RefinerViT This repo is the official implementation of "Refiner: Refining Self-attention for Vision Transformers". The repo is build on top of timm an

101 Dec 29, 2022
Self-Regulated Learning for Egocentric Video Activity Anticipation

Self-Regulated Learning for Egocentric Video Activity Anticipation Introduction This is a Pytorch implementation of the model described in our paper:

qzhb 13 Sep 23, 2022
Python inverse kinematics for your robot model based on Pinocchio.

Python inverse kinematics for your robot model based on Pinocchio.

Stéphane Caron 50 Dec 22, 2022
High performance, easy-to-use, and scalable machine learning (ML) package, including linear model (LR), factorization machines (FM), and field-aware factorization machines (FFM) for Python and CLI interface.

What is xLearn? xLearn is a high performance, easy-to-use, and scalable machine learning package that contains linear model (LR), factorization machin

Chao Ma 3k Jan 03, 2023
SNIPS: Solving Noisy Inverse Problems Stochastically

SNIPS: Solving Noisy Inverse Problems Stochastically This repo contains the official implementation for the paper SNIPS: Solving Noisy Inverse Problem

Bahjat Kawar 35 Nov 09, 2022