Few-Shot Object Detection via Association and DIscrimination

Related tags

Deep LearningFADI
Overview

Few-Shot Object Detection via Association and DIscrimination

Code release of our NeurIPS 2021 paper: Few-Shot Object Detection via Association and DIscrimination.

FSCE Figure

Bibtex

@inproceedings{cao2021few,
  title={Few-Shot Object Detection via Association and DIscrimination},
  author={Cao, Yuhang and Wang, Jiaqi and Jin, Ying and Wu, Tong and Chen, Kai and Liu, Ziwei and Lin, Dahua},
  booktitle={Thirty-Fifth Conference on Neural Information Processing Systems},
  year={2021}
}

Arxiv: https://arxiv.org/abs/2111.11656

Install dependencies

  • Create a new environment: conda create -n fadi python=3.8 -y
  • Active the newly created environment: conda activate fadi
  • Install PyTorch and torchvision: conda install pytorch=1.7 torchvision cudatoolkit=10.2 -c pytorch -y
  • Install MMDetection: pip install mmdet==2.11.0
  • Install MMCV: pip install mmcv==1.2.5
  • Install MMCV-Full: pip install mmcv-full==1.2.5 -f https://download.openmmlab.com/mmcv/dist/cu102/torch1.7.0/index.html

Note:

  • Only tested on MMDet==2.11.0, MMCV==1.2.5, it may not be consistent with other versions.
  • The above instructions use CUDA 10.2, make sure you install the correct PyTorch, Torchvision and MMCV-Full that are consistent with your CUDA version.

Prepare dataset

We follow exact the same split with TFA, please download the dataset and split files as follows:

Create a directory data in the root directory, and the expected structure for data directory:

data/
    VOCdevkit
    few_shot_voc_split

Training & Testing

Base Training

FADI share the same base training stage with TFA, we directly convert the corresponding checkpoints from TFA in Detectron2 format to MMDetection format, please download the base training checkpoints following the table.

Name Split
AP50
download
Base Model 1 80.8 model  | surgery
Base Model 2 81.9 model  | surgery
Base Model 3 82.0 model  | surgery

Create a directory models in the root directory, and the expected structure for models directory:

models/
    voc_split1_base.pth
    voc_split1_base_surgery.pth
    voc_split2_base.pth
    voc_split2_base_surgery.pth
    voc_split3_base.pth
    voc_split3_base_surgery.pth

Few-Shot Fine-tuning

FADI divides the few-shot fine-tuning stage into two steps, ie, association and discrimination,

Suppose we want to train a model for Pascal VOC split1, shot1 with 8 GPUs

1. Step 1: Association.

Getting the assigning scheme of the split:

python tools/associate.py 1

Aligning the feature distribution of the associated base and novel classes:

./tools/dist_train.sh configs/voc_split1/fadi_split1_shot1_association.py 8

2. Step 2: Discrimination

Building a discriminate feature space for novel classes with disentangling and set-specialized margin loss:

./tools/dist_train.sh configs/voc_split1/fadi_split1_shot1_discrimination.py 8

Holistically Training:

We also provide you a script tools/fadi_finetune.sh to holistically train a model for a specific split/shot by running:

./tools/fadi_finetune.sh 1 1

Evaluation

To evaluate the trained models, run

./tools/dist_test.sh configs/voc_split1/fadi_split1_shot1_discrimination.py [checkpoint] 8 --eval mAP --out res.pkl

Model Zoo

Pascal VOC split 1

Shot
nAP50
download
1 50.6 association  | discrimination
2 54.8 association  | discrimination
3 54.1 association  | discrimination
5 59.4 association  | discrimination
10 63.5 association  | discrimination

Pascal VOC split 2

Shot
nAP50
download
1 30.5 association  | discrimination
2 35.1 association  | discrimination
3 40.3 association  | discrimination
5 42.9 association  | discrimination
10 48.3 association  | discrimination

Pascal VOC split 3

Shot
nAP50
download
1 45.7 association  | discrimination
2 49.4 association  | discrimination
3 49.4 association  | discrimination
5 55.1 association  | discrimination
10 59.3 association  | discrimination
Owner
Cao Yuhang
Cao Yuhang
Topic Modelling for Humans

gensim โ€“ Topic Modelling in Python Gensim is a Python library for topic modelling, document indexing and similarity retrieval with large corpora. Targ

RARE Technologies 13.8k Jan 03, 2023
Video Instance Segmentation with a Propose-Reduce Paradigm (ICCV 2021)

Propose-Reduce VIS This repo contains the official implementation for the paper: Video Instance Segmentation with a Propose-Reduce Paradigm Huaijia Li

DV Lab 39 Nov 23, 2022
Pytorch implementation of OCNet series and SegFix.

openseg.pytorch News 2021/09/14 MMSegmentation has supported our ISANet and refer to ISANet for more details. 2021/08/13 We have released the implemen

openseg-group 1.1k Dec 23, 2022
NLMpy - A Python package to create neutral landscape models

NLMpy is a Python package for the creation of neutral landscape models that are widely used by landscape ecologists to model ecological patterns

Manaaki Whenua โ€“ Landcare Research 1 Oct 08, 2022
Gradient Inversion with Generative Image Prior

Gradient Inversion with Generative Image Prior This repository is an implementation of "Gradient Inversion with Generative Image Prior", accepted to N

MLLab @ Postech 25 Jan 09, 2023
Convolutional neural network that analyzes self-generated images in a variety of languages to find etymological similarities

This project is a convolutional neural network (CNN) that analyzes self-generated images in a variety of languages to find etymological similarities. Specifically, the goal is to prove that computer

1 Feb 03, 2022
Waymo motion prediction challenge 2021: 3rd place solution

Waymo motion prediction challenge 2021: 3rd place solution ๐Ÿ“œ Technical report ๐Ÿ—จ๏ธ Presentation ๐ŸŽ‰ Announcement ๐Ÿ›†Motion Prediction Channel Website ๐Ÿ›†

158 Jan 08, 2023
Data and extra materials for the food safety publications classifier

Data and extra materials for the food safety publications classifier The subdirectories contain detailed descriptions of their contents in the README.

1 Jan 20, 2022
Implementation of the paper: "SinGAN: Learning a Generative Model from a Single Natural Image"

SinGAN This is an unofficial implementation of SinGAN from someone who's been sitting right next to SinGAN's creator for almost five years. Please ref

35 Nov 10, 2022
Plugin adapted from Ultralytics to bring YOLOv5 into Napari

napari-yolov5 Plugin adapted from Ultralytics to bring YOLOv5 into Napari. Training and detection can be done using the GUI. Training dataset must be

2 May 05, 2022
Apply AnimeGAN-v2 across frames of a video clip

title emoji colorFrom colorTo sdk app_file pinned AnimeGAN-v2 For Videos ๐Ÿ”ฅ blue red gradio app.py false AnimeGAN-v2 For Videos Apply AnimeGAN-v2 acro

Nathan Raw 36 Oct 18, 2022
DeepMetaHandles: Learning Deformation Meta-Handles of 3D Meshes with Biharmonic Coordinates

DeepMetaHandles (CVPR2021 Oral) [paper] [animations] DeepMetaHandles is a shape deformation technique. It learns a set of meta-handles for each given

Liu Minghua 73 Dec 15, 2022
[3DV 2021] Channel-Wise Attention-Based Network for Self-Supervised Monocular Depth Estimation

Channel-Wise Attention-Based Network for Self-Supervised Monocular Depth Estimation This is the official implementation for the method described in Ch

Jiaxing Yan 27 Dec 30, 2022
A PaddlePaddle implementation of Time Interval Aware Self-Attentive Sequential Recommendation.

TiSASRec.paddle A PaddlePaddle implementation of Time Interval Aware Self-Attentive Sequential Recommendation. Introduction ่ฎบๆ–‡๏ผšTime Interval Aware Sel

Paddorch 2 Nov 28, 2021
PyTorchVideo is a deeplearning library with a focus on video understanding work

PyTorchVideo is a deeplearning library with a focus on video understanding work. PytorchVideo provides resusable, modular and efficient components needed to accelerate the video understanding researc

Facebook Research 2.7k Jan 07, 2023
[NeurIPS 2021] Garment4D: Garment Reconstruction from Point Cloud Sequences

Garment4D [PDF] | [OpenReview] | [Project Page] Overview This is the codebase for our NeurIPS 2021 paper Garment4D: Garment Reconstruction from Point

Fangzhou Hong 112 Dec 23, 2022
Official Pytorch Implementation of: "ImageNet-21K Pretraining for the Masses"(2021) paper

ImageNet-21K Pretraining for the Masses Paper | Pretrained models Official PyTorch Implementation Tal Ridnik, Emanuel Ben-Baruch, Asaf Noy, Lihi Zelni

574 Jan 02, 2023
Wenzhou-Kean University AI-LAB

AI-LAB This is Wenzhou-Kean University AI-LAB. Our research interests are in Computer Vision and Natural Language Processing. Computer Vision Please g

WKU AI-LAB 10 May 05, 2022
UMPNet: Universal Manipulation Policy Network for Articulated Objects

UMPNet: Universal Manipulation Policy Network for Articulated Objects Zhenjia Xu, Zhanpeng He, Shuran Song Columbia University Robotics and Automation

Columbia Artificial Intelligence and Robotics Lab 33 Dec 03, 2022
Implementation of "StrengthNet: Deep Learning-based Emotion Strength Assessment for Emotional Speech Synthesis"

StrengthNet Implementation of "StrengthNet: Deep Learning-based Emotion Strength Assessment for Emotional Speech Synthesis" https://arxiv.org/abs/2110

RuiLiu 65 Dec 20, 2022