Multi-View Radar Semantic Segmentation

Related tags

Deep LearningMVRSS
Overview

Multi-View Radar Semantic Segmentation

Paper

teaser_schema

Multi-View Radar Semantic Segmentation, ICCV 2021.

Arthur Ouaknine, Alasdair Newson, Patrick Pérez, Florence Tupin, Julien Rebut

This repository groups the implemetations of the MV-Net and TMVA-Net architectures proposed in the paper of Ouaknine et al..

The models are trained and tested on the CARRADA dataset.

The CARRADA dataset is available on Arthur Ouaknine's personal web page at this link: https://arthurouaknine.github.io/codeanddata/carrada.

If you find this code useful for your research, please cite our paper:

@misc{ouaknine2021multiview,
      title={Multi-View Radar Semantic Segmentation},
      author={Arthur Ouaknine and Alasdair Newson and Patrick Pérez and Florence Tupin and Julien Rebut},
      year={2021},
      eprint={2103.16214},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

Installation with Docker

It is strongly recommanded to use Docker with the provided Dockerfile containing all the dependencies.

  1. Clone the repo:
$ git clone https://github.com/ArthurOuaknine/MVRSS.git
  1. Create the Docker image:
$ cd MVRSS/
$ docker build . -t "mvrss:Dockerfile"

Note: The CARRADA dataset used for train and test is considered as already downloaded by default. If it is not the case, you can uncomment the corresponding command lines in the Dockerfile or follow the guidelines of the dedicated repository.

  1. Run a container and join an interactive session. Note that the option -v /host_path:/local_path is used to mount a volume (corresponding to a shared memory space) between the host machine and the Docker container and to avoid copying data (logs and datasets). You will be able to run the code on this session:
$ docker run -d --ipc=host -it -v /host_machine_path/datasets:/home/datasets_local -v /host_machine_path/logs:/home/logs --name mvrss --gpus all mvrss:Dockerfile sleep infinity
$ docker exec -it mvrss bash

Installation without Docker

You can either use Docker with the provided Dockerfile containing all the dependencies, or follow these steps.

  1. Clone the repo:
$ git clone https://github.com/ArthurOuaknine/MVRSS.git
  1. Install this repository using pip:
$ cd MVRSS/
$ pip install -e .

With this, you can edit the MVRSS code on the fly and import function and classes of MVRSS in other project as well.

  1. Install all the dependencies using pip and conda, please take a look at the Dockerfile for the list and versions of the dependencies.

  2. Optional. To uninstall this package, run:

$ pip uninstall MVRSS

You can take a look at the Dockerfile if you are uncertain about steps to install this project.

Running the code

In any case, it is mandatory to specify beforehand both the path where the CARRADA dataset is located and the path to store the logs and models. Example: I put the Carrada folder in /home/datasets_local, the path I should specify is /home/datasets_local. The same way if I store my logs in /home/logs. Please run the following command lines while adapting the paths to your settings:

$ cd MVRSS/mvrss/utils/
$ python set_paths.py --carrada /home/datasets_local --logs /home/logs

Training

In order to train a model, a JSON configuration file should be set. The configuration file corresponding to the selected parameters to train the TMVA-Net architecture is provided here: MVRSS/mvrss/config_files/tmvanet.json. To train the TMVA-Net architecture, please run the following command lines:

$ cd MVRSS/mvrss/
$ python train.py --cfg config_files/tmvanet.json

If you want to train the MV-Net architecture (baseline), please use the corresponding configuration file: mvnet.json.

Testing

To test a recorded model, you should specify the path to the configuration file recorded in your log folder during training. Per example, if you want to test a model and your log path has been set to /home/logs, you should specify the following path: /home/logs/carrada/tmvanet/name_of_the_model/config.json. This way, you should execute the following command lines:

$ cd MVRSS/mvrss/
$ python test.py --cfg /home/logs/carrada/tmvanet/name_of_the_model/config.json

Note: the current implementation of this script will generate qualitative results in your log folder. You can disable this behavior by setting get_quali=False in the parameters of the predict() method of the Tester() class.

Acknowledgements

License

The MVRSS repo is released under the Apache 2.0 license.

You might also like...
Learning Pixel-level Semantic Affinity with Image-level Supervision for Weakly Supervised Semantic Segmentation, CVPR 2018
Learning Pixel-level Semantic Affinity with Image-level Supervision for Weakly Supervised Semantic Segmentation, CVPR 2018

Learning Pixel-level Semantic Affinity with Image-level Supervision This code is deprecated. Please see https://github.com/jiwoon-ahn/irn instead. Int

[CVPR'21] Projecting Your View Attentively: Monocular Road Scene Layout Estimation via Cross-view Transformation
[CVPR'21] Projecting Your View Attentively: Monocular Road Scene Layout Estimation via Cross-view Transformation

Projecting Your View Attentively: Monocular Road Scene Layout Estimation via Cross-view Transformation Weixiang Yang, Qi Li, Wenxi Liu, Yuanlong Yu, Y

 Segmentation in Style: Unsupervised Semantic Image Segmentation with Stylegan and CLIP
Segmentation in Style: Unsupervised Semantic Image Segmentation with Stylegan and CLIP

Segmentation in Style: Unsupervised Semantic Image Segmentation with Stylegan and CLIP Abstract: We introduce a method that allows to automatically se

TorchDistiller - a collection of the open source pytorch code for knowledge distillation, especially for the perception tasks, including semantic segmentation, depth estimation, object detection and instance segmentation.

This project is a collection of the open source pytorch code for knowledge distillation, especially for the perception tasks, including semantic segmentation, depth estimation, object detection and instance segmentation.

Mae segmentation - Reproduction of semantic segmentation using masked autoencoder (mae)

ADE20k Semantic segmentation with MAE Getting started Install the mmsegmentation

Dynamic Multi-scale Filters for Semantic Segmentation (DMNet ICCV'2019)
Dynamic Multi-scale Filters for Semantic Segmentation (DMNet ICCV'2019)

Dynamic Multi-scale Filters for Semantic Segmentation (DMNet ICCV'2019) Introduction Official implementation of Dynamic Multi-scale Filters for Semant

Reimplementation of Dynamic Multi-scale filters for Semantic Segmentation.

Paddle implementation of Dynamic Multi-scale filters for Semantic Segmentation.

PyTorch code for the paper "Complementarity is the King: Multi-modal and Multi-grained Hierarchical Semantic Enhancement Network for Cross-modal Retrieval".

Complementarity is the King: Multi-modal and Multi-grained Hierarchical Semantic Enhancement Network for Cross-modal Retrieval (M2HSE) PyTorch code fo

Multi-atlas segmentation (MAS) is a promising framework for medical image segmentation
Multi-atlas segmentation (MAS) is a promising framework for medical image segmentation

Multi-atlas segmentation (MAS) is a promising framework for medical image segmentation. Generally, MAS methods register multiple atlases, i.e., medical images with corresponding labels, to a target image;

Comments
  • Sensor set up

    Sensor set up

    Hi, in the paper section 2.1 Automotive radar sensing, you say that -

    With conventional FMCW radars the RAD tensor is usually not available as it is too computing intensive to estimate.

    so what is difference between conventional FMCW and others FMCW radar?

    In addition, what CARRADA dataset camera and radar sensor setup? and the network cost time (ms) is possible to on-road online?

    Thanks you, hope you can give me some advice.

    opened by enting8696 1
  • metrics calculation on some frames without foreground pixels

    metrics calculation on some frames without foreground pixels

    Hi, I have a question about the calculation of some metrics including IoU, DICE, precision, and recall. In your codes I think you add all frames' confusion matrix together to have the metrics you want. But I found that the dataset contains some frames without any foreground pixels, for example:

    Screen Shot 2021-07-16 at 9 53 27 PM

    The frame without foreground pixel will give a 0 value for the above metrics. So I am afraid the performance of the model is actually underestimated. I wonder if it is more reasonable to exclude frames without the foreground pixel?

    opened by james20141606 1
  • test results.

    test results.

    Thanks for your great work. When I use your pretrained weight in test.py. I can only get mIoU 58.2 in test_result.json file and 12 percentage points worse than the metrics in the result.json file. Can you help me with the confusion?

    opened by sutiankang 0
Releases(v0.1)
Owner
valeo.ai
We are an international team based in Paris, conducting AI research for Valeo automotive applications, in collaboration with world-class academics.
valeo.ai
Over9000 optimizer

Optimizers and tests Every result is avg of 20 runs. Dataset LR Schedule Imagenette size 128, 5 epoch Imagewoof size 128, 5 epoch Adam - baseline OneC

Mikhail Grankin 405 Nov 27, 2022
Object Detection using YOLO from PyImageSearch

Object Detection using YOLO from PyImageSearch By applying object detection, you’ll not only be able to determine what is in an image, but also where

Mohamed NIANG 1 Feb 09, 2022
Re-implement CycleGAN in Tensorlayer

CycleGAN_Tensorlayer Re-implement CycleGAN in TensorLayer Original CycleGAN Improved CycleGAN with resize-convolution Prerequisites: TensorLayer Tenso

89 Aug 15, 2022
Robust Video Matting in PyTorch, TensorFlow, TensorFlow.js, ONNX, CoreML!

Robust Video Matting (RVM) English | 中文 Official repository for the paper Robust High-Resolution Video Matting with Temporal Guidance. RVM is specific

flow-dev 2 Aug 21, 2022
An implementation demo of the ICLR 2021 paper Neural Attention Distillation: Erasing Backdoor Triggers from Deep Neural Networks in PyTorch.

Neural Attention Distillation This is an implementation demo of the ICLR 2021 paper Neural Attention Distillation: Erasing Backdoor Triggers from Deep

Yige-Li 84 Jan 04, 2023
Hierarchical Metadata-Aware Document Categorization under Weak Supervision (WSDM'21)

Hierarchical Metadata-Aware Document Categorization under Weak Supervision This project provides a weakly supervised framework for hierarchical metada

Yu Zhang 53 Sep 17, 2022
Source code for our CVPR 2019 paper - PPGNet: Learning Point-Pair Graph for Line Segment Detection

PPGNet: Learning Point-Pair Graph for Line Segment Detection PyTorch implementation of our CVPR 2019 paper: PPGNet: Learning Point-Pair Graph for Line

SVIP Lab 170 Oct 25, 2022
Python codes for Lite Audio-Visual Speech Enhancement.

Lite Audio-Visual Speech Enhancement (Interspeech 2020) Introduction This is the PyTorch implementation of Lite Audio-Visual Speech Enhancement (LAVSE

Shang-Yi Chuang 85 Dec 01, 2022
Real-time face detection and emotion/gender classification using fer2013/imdb datasets with a keras CNN model and openCV.

Real-time face detection and emotion/gender classification using fer2013/imdb datasets with a keras CNN model and openCV.

Octavio Arriaga 5.3k Dec 30, 2022
Scripts and a shader to get you started on setting up an exported Koikatsu character in Blender.

KK Blender Shader Pack A plugin and a shader to get you started with setting up an exported Koikatsu character in Blender. The plugin is a Blender add

166 Jan 01, 2023
A multi-functional library for full-stack Deep Learning. Simplifies Model Building, API development, and Model Deployment.

chitra What is chitra? chitra (चित्र) is a multi-functional library for full-stack Deep Learning. It simplifies Model Building, API development, and M

Aniket Maurya 210 Dec 21, 2022
A python script to dump all the challenges locally of a CTFd-based Capture the Flag.

A python script to dump all the challenges locally of a CTFd-based Capture the Flag. Features Connects and logins to a remote CTFd instance. Dumps all

Podalirius 77 Dec 07, 2022
Viperdb - A tiny log-structured key-value database written in pure Python

ViperDB 🐍 ViperDB is a lightweight embedded key-value store written in pure Pyt

17 Oct 17, 2022
Region-aware Contrastive Learning for Semantic Segmentation, ICCV 2021

Region-aware Contrastive Learning for Semantic Segmentation, ICCV 2021 Abstract Recent works have made great success in semantic segmentation by explo

Hanzhe Hu 30 Dec 29, 2022
Using Machine Learning to Test Causal Hypotheses in Conjoint Analysis

Readme File for "Using Machine Learning to Test Causal Hypotheses in Conjoint Analysis" by Ham, Imai, and Janson. (2022) All scripts were written and

0 Jan 27, 2022
A simple, fully convolutional model for real-time instance segmentation.

You Only Look At CoefficienTs ██╗ ██╗ ██████╗ ██╗ █████╗ ██████╗████████╗ ╚██╗ ██╔╝██╔═══██╗██║ ██╔══██╗██╔════╝╚══██╔══╝ ╚██

Daniel Bolya 4.6k Dec 30, 2022
Pytorch implementation of U-Net, R2U-Net, Attention U-Net, and Attention R2U-Net.

pytorch Implementation of U-Net, R2U-Net, Attention U-Net, Attention R2U-Net U-Net: Convolutional Networks for Biomedical Image Segmentation https://a

leejunhyun 2k Jan 02, 2023
An experiment on the performance of homemade Q-learning AIs in Agar.io depending on their state representation and available actions

Agar.io_Q-Learning_AI An experiment on the performance of homemade Q-learning AIs in Agar.io depending on their state representation and available act

1 Jun 09, 2022
Just-Now - This Is Just Now Login Friendlist Cloner Tools

JUST NOW LOGIN FRIENDLIST CLONER TOOLS Install $ apt update $ apt upgrade $ apt

MAHADI HASAN AFRIDI 21 Mar 09, 2022
Airbus Ship Detection Challenge

Airbus Ship Detection Challenge This is an open solution to the Airbus Ship Detection Challenge. Our goals We are building entirely open solution to t

minerva.ml 55 Nov 29, 2022