Code base for the paper "Scalable One-Pass Optimisation of High-Dimensional Weight-Update Hyperparameters by Implicit Differentiation"

Overview

This repository contains code for the paper Scalable One-Pass Optimisation of High-Dimensional Weight-Update Hyperparameters by Implicit Differentiation.

Installation

Our dependencies are fully specified in Pipfile, which can be supplied to pipenv to install the environment. One failsafe approach is to install pipenv in a fresh virtual environment, then run pipenv install in this directory. Note the Pipfile specifies our Python 3.9 development environment; most experiments were run in an identical environment under Python 3.7 instead.

Difficulties with CUDA versions meant we had to manually install PyTorch and Torchvision rather than use pipenv --- the corresponding lines in Pipfile may need adjustment for your use case. Alternatively, use the list of dependencies as a guide to what to install yourself with pip, or use the full dump of our development environment in final_requirements.txt.

Datasets may not be bundled with the repository, but are expected to be found at locations specified in datasets.py, preprocessed into single PyTorch tensors of all the input and output data (generally data/<dataset>/data.pt and data/<dataset>/targets.pt).

Configuration

Training code is controlled with YAML configuration files, as per the examples in configs/. Generally one file is required to specify the dataset, and a second to specify the algorithm, using the obvious naming convention. Brief help text is available on the command line, but the meanings of each option should be reasonably self-explanatory.

For Ours (WD+LR), use the file Ours_LR.yaml; for Ours (WD+LR+M), use the file Ours_LR_Momentum.yaml; for Ours (WD+HDLR+M), use the file Ours_HDLR_Momentum.yaml. For Long/Medium/Full Diff-through-Opt, we provide separate configuration files for the UCI cases and the Fashion-MNIST cases.

We provide two additional helper configurations. Random_Validation.yaml copies Random.yaml, but uses the entire validation set to compute the validation loss at each logging step. This allows for stricter analysis of the best-performing run at particular time steps, for instance while constructing Random (3-batched). Random_Validation_BayesOpt.yaml only forces the use of the entire dataset for the very last validation loss computation, so that Bayesian Optimisation runs can access reliable performance metrics without adversely affecting runtime.

The configurations provided match those necessary to replicate the main experiments in our paper (in Section 4: Experiments). Other trials, such as those in the Appendix, will require these configurations to be modified as we describe in the paper. Note especially that our three short-horizon bias studies all require different modifications to the LongDiffThroughOpt_*.yaml configurations.

Running

Individual runs are commenced by executing train.py and passing the desired configuration files with the -c flag. For example, to run the default Fashion-MNIST experiments using Diff-through-Opt, use:

$ python train.py -c ./configs/fashion_mnist.yaml ./configs/DiffThroughOpt.yaml

Bayesian Optimisation runs are started in a similar way, but with a call to bayesopt.py rather than train.py.

For executing multiple runs in parallel, parallel_exec.py may be useful: modify the main function call at the bottom of the file as required, then call this file instead of train.py at the command line. The number of parallel workers may be specified by num_workers. Any configurations passed at the command line are used as a base, to which modifications may be added by override_generator. The latter should either be a function which generates one override dictionary per call (in which case num_repetitions sets the number of overrides to generate), or a function which returns a generator over configurations (in which case set num_repetitions = None). Each configuration override is run once for each of algorithms, whose configurations are read automatically from the corresponding files and should not be explicitly passed at the command line. Finally, main_function may be used to switch between parallel calls to train.py and bayesopt.py as required.

For blank-slate replications, the most useful override generators will be natural_sgd_generator, which generates a full SGD initialisation in the ranges we use, and iteration_id, which should be used with Bayesian Optimisation runs to name each parallel run using a counter. Other generators may be useful if you wish to supplement existing results with additional algorithms etc.

PennTreebank and CIFAR-10 were executed on clusters running SLURM; the corresponding subfolders contain configuration scripts for these experiments, and submit.sh handles the actual job submission.

Analysis

By default, runs are logged in Tensorboard format to the ./runs directory, where Tensorboard may be used to inspect the results. If desired, a descriptive name can be appended to a particular execution using the -n switch on the command line. Runs can optionally be written to a dedicated subfolder specified with the -g switch, and the base folder for logging can be changed with the -l switch.

If more precise analysis is desired, pass the directory containing the desired results to util.get_tags(), which will return a dictionary of the evolution of each logged scalar in the results. Note that this function uses Tensorboard calls which predate its --load_fast option, so may take tens of minutes to return.

This data dictionary can be passed to one of the more involved plotting routines in figures.py to produce specific plots. The script paper_plots.py generates all the plots we use in our paper, and may be inspected for details of any particular plot.

Keyword2Text This repository contains the code of the paper: "A Plug-and-Play Method for Controlled Text Generation"

Keyword2Text This repository contains the code of the paper: "A Plug-and-Play Method for Controlled Text Generation", if you find this useful and use

57 Dec 27, 2022
A tool to estimate time varying instantaneous reproduction number during epidemics

EpiEstim A tool to estimate time varying instantaneous reproduction number during epidemics. It is described in the following paper: @article{Cori2013

MRC Centre for Global Infectious Disease Analysis 78 Dec 19, 2022
The repo for the paper "I3CL: Intra- and Inter-Instance Collaborative Learning for Arbitrary-shaped Scene Text Detection".

I3CL: Intra- and Inter-Instance Collaborative Learning for Arbitrary-shaped Scene Text Detection Updates | Introduction | Results | Usage | Citation |

33 Jan 05, 2023
LUKE -- Language Understanding with Knowledge-based Embeddings

LUKE (Language Understanding with Knowledge-based Embeddings) is a new pre-trained contextualized representation of words and entities based on transf

Studio Ousia 587 Dec 30, 2022
3D mesh stylization driven by a text input in PyTorch

Text2Mesh [Project Page] Text2Mesh is a method for text-driven stylization of a 3D mesh, as described in "Text2Mesh: Text-Driven Neural Stylization fo

Threedle (University of Chicago) 649 Dec 27, 2022
GE2340 project source code without credentials.

GE2340-Project-Public GE2340 project source code without credentials. Run the bot.py to start the bot Telegram: @jasperwong_ge2340_bot If the bot does

0 Feb 10, 2022
FinGAT: A Financial Graph Attention Networkto Recommend Top-K Profitable Stocks

FinGAT: A Financial Graph Attention Networkto Recommend Top-K Profitable Stocks This is our implementation for the paper: FinGAT: A Financial Graph At

Yu-Che Tsai 64 Dec 13, 2022
Find-Lane-Line - Use openCV library and Python to detect the road-lane-line

Find-Lane-Line This project is to use openCV library and Python to detect the road-lane-line. Data Pipeline Step one : Color Selection Step two : Cann

Kenny Cheng 3 Aug 17, 2022
Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. CVPR 2018

Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning Tensorflow code and models for the paper: Large Scale Fine-Grained Categ

Yin Cui 187 Oct 01, 2022
PyTorch implementations of neural network models for keyword spotting

Honk: CNNs for Keyword Spotting Honk is a PyTorch reimplementation of Google's TensorFlow convolutional neural networks for keyword spotting, which ac

Castorini 475 Dec 15, 2022
A model to classify a piece of news as REAL or FAKE

Fake_news_classification A model to classify a piece of news as REAL or FAKE. This python project of detecting fake news deals with fake and real news

Gokul Stark 1 Jan 29, 2022
An API-first distributed deployment system of deep learning models using timeseries data to analyze and predict systems behaviour

Gordo Building thousands of models with timeseries data to monitor systems. Table of content About Examples Install Uninstall Developer manual How to

Equinor 26 Dec 27, 2022
Fast and Easy Infinite Neural Networks in Python

Neural Tangents ICLR 2020 Video | Paper | Quickstart | Install guide | Reference docs | Release notes Overview Neural Tangents is a high-level neural

Google 1.9k Jan 09, 2023
Training Certifiably Robust Neural Networks with Efficient Local Lipschitz Bounds (Local-Lip)

Training Certifiably Robust Neural Networks with Efficient Local Lipschitz Bounds (Local-Lip) Introduction TL;DR: We propose an efficient and trainabl

17 Dec 01, 2022
[CVPR 2021] Official PyTorch Implementation for "Iterative Filter Adaptive Network for Single Image Defocus Deblurring"

IFAN: Iterative Filter Adaptive Network for Single Image Defocus Deblurring Checkout for the demo (GUI/Google Colab)! The GUI version might occasional

Junyong Lee 173 Dec 30, 2022
End-to-End Object Detection with Fully Convolutional Network

This project provides an implementation for "End-to-End Object Detection with Fully Convolutional Network" on PyTorch.

472 Dec 22, 2022
Mixed Transformer UNet for Medical Image Segmentation

MT-UNet Update 2021/11/19 Thank you for your interest in our work. We have uploaded the code of our MTUNet to help peers conduct further research on i

dotman 92 Dec 25, 2022
Deep Anomaly Detection with Outlier Exposure (ICLR 2019)

Outlier Exposure This repository contains the essential code for the paper Deep Anomaly Detection with Outlier Exposure (ICLR 2019). Requires Python 3

Dan Hendrycks 464 Dec 27, 2022
Zen-NAS: A Zero-Shot NAS for High-Performance Deep Image Recognition

Zen-NAS: A Zero-Shot NAS for High-Performance Deep Image Recognition How Fast Compare to Other Zero-Shot NAS Proxies on CIFAR-10/100 Pre-trained Model

190 Dec 29, 2022
Rafael Project- Classifying rockets to different types using data science algorithms.

Rocket-Classify Rafael Project- Classifying rockets to different types using data science algorithms. In this project we received data base with data

Hadassah Engel 5 Sep 18, 2021