CZU-MHAD: A multimodal dataset for human action recognition utilizing a depth camera and 10 wearable inertial sensors

Overview

CZU-MHAD: A multimodal dataset for human action recognition utilizing a depth camera and 10 wearable inertial sensors

  In order to facilitate the research of multi-modal sensor fusion for human action recognition, this paper provides a multi-modal human action dataset using Kinect depth camera and multile wearable sensors, which is called Changzhou University multi-modal human action dataset (CZU-MHAD). Our dataset contains more wearable sensors, which aims to obtain the position data of human skeleton joints, as well as 3-axis acceleration and 3-axis angular velocity data of corresponding joints. Our dataset provides time synchronous depth video, skeleton joint position, 3-axis acceleration and 3-axis angular velocity data to describe a complete human action.

1. Sensors

  The CZU-MHAD uses 1 Microsoft Kinect V2 and 10 wearable sensors MPU9250. These two kinds of sensors are widely used, which have the characteristics of low power consumption, low cost and simple operation. In addition, it does not require too much computing power to process the data collected by the two kind sensors in real time.

1.1 Kinect v2

  The above picture is the Microsoft Kinect V2, which can collect both color and depth images at a sampling frequency of 30 frames per second. Kinect SDK is a software package provided by Microsoft, which can be used to track 25 skeleton joint points and their 3D spatial positions. You can download the Kinect SDK in https://www.microsoft.com/en-us/download/details.aspx?id=44561.

  The above image shows 25 skeleton joint points of the human body that Kinect V2 can track.

1.2 MPU9250

  The MPU9250 can capture 3-axis acceleration, 3-axis angular velocity and 3-axis magnetic intensity.

  • The measurement range of MPU9250:
    • the measurement range of accelerometer is ±16g;
    • the measurement range of angular velocity of the gyroscope is ±2000 degrees/second.

  CZU-MHAD uses Raspberry PI to interact with MPU9250 through the integrated circuit bus (IIC) interface, realizing the functions of reading, saving and uploading MPU9250 sensor data to the server.The connection between Raspberry PI and MPU9250 is shown in picture.

  You can visit https://projects.raspberrypi.org/en/projects/raspberry-pi-setting-up to learn more about Raspberry PI.

2. Data Acquisition System Architecture

  This section introduces the data acquisition system of CZU-MHAD dataset. CZU-MHAD uses Kinect V2 sensor to collect depth image and joint position data, and uses MPU9250 sensor to collect 3-axis acceleration data and 3-axis angular velocity data. In order to collect the 3-axis acceleration data and the 3-axis angular velocity data of the whole body, a motion data acquisition system including 10 MPU9250 sensors is built-in this paper. The sampling system architecture is shown in following picture.

  The MPU9250 sensor is controlled by Raspberry PI, Kinect V2 is controlled by a notebook computer, and time synchronization with a NTP server is carried out every time data is collected. After considering the sampling scheme of MHAD and UTD-MHAD, the position of wearable sensors is determined as shown in the following picture.

  The points marked in red in the figure are the positions of inertial sensors, the left in the figure is the left side of the human body, and the right in the figure is the right side of the human body.

3. Information for "CZU-MHAD" dataset.

  The CZU-MHAD dataset contains 22 actions performed by 5 subjects (5 males). Each subject repeated each action >8 times. The CZU-MHAD dataset contains a total of >880 samples. The 22 actions performed are listed in Table. It can be seen that CZU-MHAD includes common gestures (such as Draw fork, Draw circle),daily activities (such as Sur Place, Clap, Bend down), and training actions (such as Left body turning movement, Left lateral movement).

Describe different actions in English:

ID Action name ID Action name ID Action name ID Action name
1 Right high wave 7 Draw fork with right hand 13 Right foot kick side 19 Left body turning movement
2 Left high wave 8 Draw fork with left hand 14 Left foot kick side 20 Right body turning movement
3 Right horizontal wave 9 Draw circle with right hand 15 Clap 21 Left lateral movement
4 Left horizontal wave 10 Draw circle with left hand 16 Bend down 22 Right lateral movement
5 Hammer with right hand 11 Right foot kick foward 17 Wave up and down
6 Grasp with right hand 12 Left foot kick foward 18 Sur Place

Describe different actions in Chinese::

ID Action name ID Action name ID Action name ID Action name
1 右高挥手 7 右手画× 13 右脚侧踢 19 左体转
2 左高挥手 8 左手画× 14 左脚侧踢 20 右体转
3 右水平挥手 9 右手画○ 15 拍手 21 左体侧
4 左水平挥手 10 左手画○ 16 弯腰 22 右体侧
5 锤(右手) 11 右脚前踢 17 上下挥手
6 抓(右手) 12 左脚前踢 18 原地踏步

4. How to download the dataset

   We offer one way to download our CZU-MHAD dataset:

  1. BaiduDisk(百度网盘)

    (Link) 链接:https://pan.baidu.com/s/1SBy0D2f1ZoX_mDyd3YEp2Q
    (Code) 提取码:qsq1

  In the CZU-MHAD, you will see three subfolders:

  • depth_mat

       The depth_mat contains the depth images captured by Kinect V2. In this folder, each file represents an action sample. Each file is named by the subject's name, the category label of the action and the time of each action of each subject. Take cyy_a1_t1.mat as an example, cyy is the subject's name, a1 is the name of the action, t1 stands the first time to perform this action. How to read data is shown in our sample code.

  • sensors_mat

       The sensors_mat contains the data of 3-axis acceleration and 3-axis angular velocity captured by MPU9250. In this folder, each file represents an action sample. Each file is named by the subject's name, the category label of the action and the time of each action of each subject. Take cyy_a1_t1.mat as an example, cyy is the subject's name, a1 is the name of the action, t1 stands the first time to perform this action. How to read data is shown in our sample code.

  • skeleton_mat

       The skeleton_mat contains the position data of skeleton joint points captured by Kinect V2. In this folder, each file represents an action sample. Each file is named by the subject's name, the category label of the action and the time of each action of each subject. Take cyy_a1_t1.mat as an example, cyy is the subject's name, a1 is the name of the action, t1 stands the first time to perform this action. How to read data is shown in our sample code.

5. Sample codes

  1. BaiduDisk(百度网盘)

    (Link) 链接:https://pan.baidu.com/s/1bWq7ypygjTffkor1GAExMQ

    (Code) 提取码:limf

6. Citation

To use our dataset, please refer to the following paper:

  • Mo Yujian, Hou Zhenjie, Chang Xingzhi, Liang Jiuzhen, Chen Chen, Huan Juan. Structural feature representation and fusion of behavior recognition oriented human spatial cooperative motion[J]. Journal of Beijing University of Aeronautics and Astronautics,2019,(12):2495-2505.

7. Mailing List

  If you are interested to recieve news, updates, and future events about this dataset, please email me.

#. Thanks(致谢)

  1. Cui Yaoyao(崔瑶瑶)
  2. Chao Xin(巢新)
  3. Qin Yinhua(秦银华)
  4. Zhang Yuheng(张宇恒)
  5. Mo Yujian(莫宇剑)

#. Gao Liang(高亮)

#. Shi Yuhang(石宇航)

  The subjects marked with '#' also participated in our data collection process. However, due to the unstable power supply and abnormal heat dissipation of Raspberry PI, their behavior data is abnormal. Therefore, we do not provide their data.

You might also like...
Official PyTorch implementation of
Official PyTorch implementation of "IntegralAction: Pose-driven Feature Integration for Robust Human Action Recognition in Videos", CVPRW 2021

IntegralAction: Pose-driven Feature Integration for Robust Human Action Recognition in Videos Introduction This repo is official PyTorch implementatio

Python script for performing depth completion from sparse depth and rgb images using the msg_chn_wacv20. model in ONNX
Python script for performing depth completion from sparse depth and rgb images using the msg_chn_wacv20. model in ONNX

ONNX msg_chn_wacv20 depth completion Python script for performing depth completion from sparse depth and rgb images using the msg_chn_wacv20 model in

Python script for performing depth completion from sparse depth and rgb images using the msg_chn_wacv20. model in Tensorflow Lite.
Python script for performing depth completion from sparse depth and rgb images using the msg_chn_wacv20. model in Tensorflow Lite.

TFLite-msg_chn_wacv20-depth-completion Python script for performing depth completion from sparse depth and rgb images using the msg_chn_wacv20. model

Info and sample codes for "NTU RGB+D Action Recognition Dataset"

"NTU RGB+D" Action Recognition Dataset "NTU RGB+D 120" Action Recognition Dataset "NTU RGB+D" is a large-scale dataset for human action recognition. I

LVI-SAM: Tightly-coupled Lidar-Visual-Inertial Odometry via Smoothing and Mapping
LVI-SAM: Tightly-coupled Lidar-Visual-Inertial Odometry via Smoothing and Mapping

LVI-SAM This repository contains code for a lidar-visual-inertial odometry and mapping system, which combines the advantages of LIO-SAM and Vins-Mono

A real-time motion capture system that estimates poses and global translations using only 6 inertial measurement units
A real-time motion capture system that estimates poses and global translations using only 6 inertial measurement units

TransPose Code for our SIGGRAPH 2021 paper "TransPose: Real-time 3D Human Translation and Pose Estimation with Six Inertial Sensors". This repository

 COVINS -- A Framework for Collaborative Visual-Inertial SLAM and Multi-Agent 3D Mapping
COVINS -- A Framework for Collaborative Visual-Inertial SLAM and Multi-Agent 3D Mapping

COVINS -- A Framework for Collaborative Visual-Inertial SLAM and Multi-Agent 3D Mapping Version 1.0 COVINS is an accurate, scalable, and versatile vis

Monocular Depth Estimation - Weighted-average prediction from multiple pre-trained depth estimation models
Monocular Depth Estimation - Weighted-average prediction from multiple pre-trained depth estimation models

merged_depth runs (1) AdaBins, (2) DiverseDepth, (3) MiDaS, (4) SGDepth, and (5) Monodepth2, and calculates a weighted-average per-pixel absolute dept

The implemention of Video Depth Estimation by Fusing Flow-to-Depth Proposals

Flow-to-depth (FDNet) video-depth-estimation This is the implementation of paper Video Depth Estimation by Fusing Flow-to-Depth Proposals Jiaxin Xie,

Releases(skeleton)
Owner
yujmo
帅气,阳光,灿烂,美丽,大方
yujmo
DrQ-v2: Improved Data-Augmented Reinforcement Learning

DrQ-v2: Improved Data-Augmented RL Agent Method DrQ-v2 is a model-free off-policy algorithm for image-based continuous control. DrQ-v2 builds on DrQ,

Facebook Research 234 Jan 01, 2023
Code for "FGR: Frustum-Aware Geometric Reasoning for Weakly Supervised 3D Vehicle Detection", ICRA 2021

FGR This repository contains the python implementation for paper "FGR: Frustum-Aware Geometric Reasoning for Weakly Supervised 3D Vehicle Detection"(I

Yi Wei 31 Dec 08, 2022
Codebase for "Revisiting spatio-temporal layouts for compositional action recognition" (Oral at BMVC 2021).

Revisiting spatio-temporal layouts for compositional action recognition Codebase for "Revisiting spatio-temporal layouts for compositional action reco

Gorjan 20 Dec 15, 2022
A python3 tool to take a 360 degree survey of the RF spectrum (hamlib + rotctld + RTL-SDR/HackRF)

RF Light House (rflh) A python script to use a rotor and a SDR device (RTL-SDR or HackRF One) to measure the RF level around and get a data set and be

Pavel Milanes (CO7WT) 11 Dec 13, 2022
Learning from Synthetic Shadows for Shadow Detection and Removal [Inoue+, IEEE TCSVT 2020].

Learning from Synthetic Shadows for Shadow Detection and Removal (IEEE TCSVT 2020) Overview This repo is for the paper "Learning from Synthetic Shadow

Naoto Inoue 67 Dec 28, 2022
Clinica is a software platform for clinical research studies involving patients with neurological and psychiatric diseases and the acquisition of multimodal data

Clinica Software platform for clinical neuroimaging studies Homepage | Documentation | Paper | Forum | See also: AD-ML, AD-DL ClinicaDL About The Proj

ARAMIS Lab 165 Dec 29, 2022
Detecting Blurred Ground-based Sky/Cloud Images

Detecting Blurred Ground-based Sky/Cloud Images With the spirit of reproducible research, this repository contains all the codes required to produce t

1 Oct 20, 2021
This repository contains several image-to-image translation models, whcih were tested for RGB to NIR image generation. The models are Pix2Pix, Pix2PixHD, CycleGAN and PointWise.

RGB2NIR_Experimental This repository contains several image-to-image translation models, whcih were tested for RGB to NIR image generation. The models

5 Jan 04, 2023
Open source code for the paper of Neural Sparse Voxel Fields.

Neural Sparse Voxel Fields (NSVF) Project Page | Video | Paper | Data Photo-realistic free-viewpoint rendering of real-world scenes using classical co

Meta Research 647 Dec 27, 2022
A New Approach to Overgenerating and Scoring Abstractive Summaries

We provide the source code for the paper "A New Approach to Overgenerating and Scoring Abstractive Summaries" accepted at NAACL'21. If you find the code useful, please cite the following paper.

Kaiqiang Song 4 Apr 03, 2022
Code for the paper 'A High Performance CRF Model for Clothes Parsing'.

Clothes Parsing Overview This code provides an implementation of the research paper: A High Performance CRF Model for Clothes Parsing Edgar Simo-S

Edgar Simo-Serra 119 Nov 21, 2022
NumQMBasic - A mini-course offered to Undergrad physics students

The best way to use this material is by forking it by click the Fork button at the top, right corner. Then you will get your own copy to play with! Th

Raghu 35 Dec 05, 2022
T2F: text to face generation using Deep Learning

⭐ [NEW] ⭐ T2F - 2.0 Teaser (coming soon ...) Please note that all the faces in the above samples are generated ones. The T2F 2.0 will be using MSG-GAN

Animesh Karnewar 533 Dec 22, 2022
Malware Analysis Neural Network project.

MalanaNeuralNetwork Description Malware Analysis Neural Network project. Table of Contents Getting Started Requirements Installation Clone Set-Up VENV

2 Nov 13, 2021
[CVPR2021 Oral] UP-DETR: Unsupervised Pre-training for Object Detection with Transformers

UP-DETR: Unsupervised Pre-training for Object Detection with Transformers This is the official PyTorch implementation and models for UP-DETR paper: @a

dddzg 430 Dec 23, 2022
IRON Kaggle project done while doing IRONHACK Bootcamp where we had to analyze and use a Machine Learning Project to predict future sales

IRON Kaggle project done while doing IRONHACK Bootcamp where we had to analyze and use a Machine Learning Project to predict future sales. In this case, we ended up using XGBoost because it was the o

1 Jan 04, 2022
Implementation of GeoDiff: a Geometric Diffusion Model for Molecular Conformation Generation (ICLR 2022).

GeoDiff: a Geometric Diffusion Model for Molecular Conformation Generation [OpenReview] [arXiv] [Code] The official implementation of GeoDiff: A Geome

Minkai Xu 155 Dec 26, 2022
Driller: augmenting AFL with symbolic execution!

Driller Driller is an implementation of the driller paper. This implementation was built on top of AFL with angr being used as a symbolic tracer. Dril

Shellphish 791 Jan 06, 2023
MBPO (paper: When to trust your model: Model-based policy optimization) in offline RL settings

offline-MBPO This repository contains the code of a version of model-based RL algorithm MBPO, which is modified to perform in offline RL settings Pape

LxzGordon 1 Oct 24, 2021
Using deep learning model to detect breast cancer.

Breast-Cancer-Detection Breast cancer is the most frequent cancer among women, with around one in every 19 women at risk. The number of cases of breas

1 Feb 13, 2022