[CVPR'21] Projecting Your View Attentively: Monocular Road Scene Layout Estimation via Cross-view Transformation

Overview

Projecting Your View Attentively: Monocular Road Scene Layout Estimation via Cross-view Transformation

Weixiang Yang, Qi Li, Wenxi Liu, Yuanlong Yu, Yuexin Ma, Shengfeng He, Jia Pan

Paper

Accepted to CVPR 2021

图片

Abstract

HD map reconstruction is crucial for autonomous driving. LiDAR-based methods are limited due to the deployed expensive sensors and time-consuming computation. Camera-based methods usually need to separately perform road segmentation and view transformation, which often causes distortion and the absence of content.  To push the limits of the technology, we present a novel framework that enables reconstructing a local map formed by road layout and vehicle occupancy in the bird's-eye view given a front-view monocular image only.  In particular, we propose a cross-view transformation module, which takes the constraint of cycle consistency between views into account and makes full use of their correlation to strengthen the view transformation and scene understanding. Considering the relationship between vehicles and roads, we also design a context-aware discriminator to further refine the results. Experiments on public benchmarks show that our method achieves the state-of-the-art performance in the tasks of road layout estimation and vehicle occupancy estimation. Especially for the latter task, our model outperforms all competitors by a large margin. Furthermore, our model runs at 35 FPS on a single GPU, which is efficient and applicable for real-time panorama HD map reconstruction.

Contributions

  • We propose a novel framework that reconstructs a local map formed by top-view road scene layout and vehicle occupancy using a single monocular front-view image only. In particular, we propose a cross-view transformation module which leverages the cycle consistency between views and their correlation to strengthen the view transformation.
  • We also propose a context-aware discriminator that considers the spatial relationship between vehicles and roads in the task of estimating vehicle occupancies.
  • On public benchmarks, it is demonstrated that our model achieves the state-of-the-art performance for the tasks of road layout and vehicle occupancy estimation.

Approach overview

图片

Repository Structure

cross-view/
├── crossView            # Contains scripts for dataloaders and network/model architecture
└── datasets             # Contains datasets
    ├── argoverse        # argoverse dataset
    ├── kitti            # kitti dataset 
├── log                  # Contains a log of network/model
├── losses               # Contains scripts for loss of network/model
├── models               # Contains the saved model of the network/model
├── output               # Contains output of network/model
└── splits
    ├── 3Dobject         # Training and testing splits for KITTI 3DObject Detection dataset 
    ├── argo             # Training and testing splits for Argoverse Tracking v1.0 dataset
    ├── odometry         # Training and testing splits for KITTI Odometry dataset
    └── raw              # Training and testing splits for KITTI RAW dataset(based on Schulter et. al.)

Installation

We recommend setting up a Python 3.7 and Pytorch 1.0 Virtual Environment and installing all the dependencies listed in the requirements file.

git clone https://github.com/JonDoe-297/cross-view.git

cd cross-view
pip install -r requirements.txt

Datasets

In the paper, we've presented results for KITTI 3D Object, KITTI Odometry, KITTI RAW, and Argoverse 3D Tracking v1.0 datasets. For comparison with Schulter et. al., We've used the same training and test splits sequences from the KITTI RAW dataset. For more details about the training/testing splits one can look at the splits directory. And you can download Ground-truth from Monolayout.

# Download KITTI RAW
./data/download_datasets.sh raw

# Download KITTI 3D Object
./data/download_datasets.sh object

# Download KITTI Odometry
./data/download_datasets.sh odometry

# Download Argoverse Tracking v1.0
./data/download_datasets.sh argoverse

The above scripts will download, unzip and store the respective datasets in the datasets directory.

datasets/
└── argoverse                          # argoverse dataset
    └── argoverse-tracking
        └── train1
            └── 1d676737-4110-3f7e-bec0-0c90f74c248f
                ├── car_bev_gt         # Vehicle GT
                ├── road_gt            # Road GT
                ├── stereo_front_left  # RGB image
└── kitti                              # kitti dataset 
    └── object                         # kitti 3D Object dataset 
        └── training
            ├── image_2                # RGB image
            ├── vehicle_256            # Vehicle GT
    ├── odometry                       # kitti odometry dataset 
        └── 00
            ├── image_2                # RGB image
            ├── road_dense128  # Road GT
    ├── raw                            # kitti raw dataset 
        └── 2011_09_26
            └── 2011_09_26_drive_0001_sync
                ├── image_2            # RGB image
                ├── road_dense128      # Road GT

Training

  1. Prepare the corresponding dataset
  2. Run training
# Corss view Road (KITTI Odometry)
python3 train.py --type static --split odometry --data_path ./datasets/odometry/ --model_name <Model Name with specifications>

# Corss view Vehicle (KITTI 3D Object)
python3 train.py --type dynamic --split 3Dobject --data_path ./datasets/kitti/object/training --model_name <Model Name with specifications>

# Corss view Road (KITTI RAW)
python3 train.py --type static --split raw --data_path ./datasets/kitti/raw/  --model_name <Model Name with specifications>

# Corss view Vehicle (Argoverse Tracking v1.0)
python3 train.py --type dynamic --split argo --data_path ./datasets/argoverse/ --model_name <Model Name with specifications>

# Corss view Road (Argoverse Tracking v1.0)
python3 train.py --type static --split argo --data_path ./datasets/argoverse/ --model_name <Model Name with specifications>
  1. The training model are in "models" (default: ./models)

Testing

  1. Download pre-trained models
  2. Run testing
python3 test.py --type <static/dynamic> --model_path <path to the model directory> --image_path <path to the image directory>  --out_dir <path to the output directory> 
  1. The results are in "output" (default: ./output)

Evaluation

  1. Prepare the corresponding dataset
  2. Download pre-trained models
  3. Run evaluation
# Evaluate on KITTI Odometry 
python3 eval.py --type static --split odometry --model_path <path to the model directory> --data_path ./datasets/odometry --height 512 --width 512 --occ_map_size 128

# Evaluate on KITTI 3D Object
python3 eval.py --type dynamic --split 3Dobject --model_path <path to the model directory> --data_path ./datasets/kitti/object/training

# Evaluate on KITTI RAW
python3 eval.py --type static --split raw --model_path <path to the model directory> --data_path ./datasets/kitti/raw/

# Evaluate on Argoverse Tracking v1.0 (Road)
python3 eval.py --type static --split argo --model_path <path to the model directory> --data_path ./datasets/kitti/argoverse/

# Evaluate on Argoverse Tracking v1.0 (Vehicle)
python3 eval.py --type dynamic --split argo --model_path <path to the model directory> --data_path ./datasets/kitti/argoverse
  1. The results are in "output" (default: ./output)

Pretrained Models

The following table provides links to the pre-trained models for each dataset mentioned in our paper. The table also shows the corresponding evaluation results for these models.

Dataset Segmentation Objects mIOU(%) mAP(%) Pretrained Model
KITTI 3D Object Vehicle 38.85 51.04 link
KITTI Odometry Road 77.47 86.39 link
KITTI Raw Road 68.26 79.65 link
Argoverse Tracking Vehicle 47.87 62.69 link
Argoverse Tracking Road 76.56 87.30 link

Results

图片

Contact

If you meet any problems, please describe them in issues or contact:

License

This project is released under the MIT License (refer to the LICENSE file for details).This project partially depends on the sources of Monolayout

AFL binary instrumentation

E9AFL --- Binary AFL E9AFL inserts American Fuzzy Lop (AFL) instrumentation into x86_64 Linux binaries. This allows binaries to be fuzzed without the

242 Dec 12, 2022
Code for the Interspeech 2021 paper "AST: Audio Spectrogram Transformer".

AST: Audio Spectrogram Transformer Introduction Citing Getting Started ESC-50 Recipe Speechcommands Recipe AudioSet Recipe Pretrained Models Contact I

Yuan Gong 603 Jan 07, 2023
A boosting-based Multiple Instance Learning (MIL) package that includes MIL-Boost and MCIL-Boost

A boosting-based Multiple Instance Learning (MIL) package that includes MIL-Boost and MCIL-Boost

Jun-Yan Zhu 27 Aug 08, 2022
Fantasy Points Prediction and Dream Team Formation

Fantasy-Points-Prediction-and-Dream-Team-Formation Collected Data from open source resources that have over 100 Parameters for predicting cricket play

Akarsh Singh 2 Sep 13, 2022
GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training @ KDD 2020

GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training Original implementation for paper GCC: Graph Contrastive Coding for Graph Neural N

THUDM 274 Dec 27, 2022
Awesome Remote Sensing Toolkit based on PaddlePaddle.

基于飞桨框架开发的高性能遥感图像处理开发套件,端到端地完成从训练到部署的全流程遥感深度学习应用。 最新动态 PaddleRS 即将发布alpha版本!欢迎大家试用 简介 PaddleRS是遥感科研院所、相关高校共同基于飞桨开发的遥感处理平台,支持遥感图像分类,目标检测,图像分割,以及变化检测等常用遥

146 Dec 11, 2022
GeoMol: Torsional Geometric Generation of Molecular 3D Conformer Ensembles

GeoMol: Torsional Geometric Generation of Molecular 3D Conformer Ensembles This repository contains a method to generate 3D conformer ensembles direct

127 Dec 20, 2022
ReferFormer - Official Implementation of ReferFormer

The official implementation of the paper: Language as Queries for Referring Video Object Segmentation Language as Queries for Referring Video Object S

Jonas Wu 232 Dec 29, 2022
Official implementation of UTNet: A Hybrid Transformer Architecture for Medical Image Segmentation

UTNet (Accepted at MICCAI 2021) Official implementation of UTNet: A Hybrid Transformer Architecture for Medical Image Segmentation Introduction Transf

110 Jan 01, 2023
DC540 hacking challenge 0x00005a.

dc540-0x00005a DC540 hacking challenge 0x00005a. PROMOTIONAL VIDEO - WATCH NOW HERE ON YOUTUBE CRITICAL PART 5A VIDEO - WATCH NOW HERE ON YOUTUBE Prio

Kevin Thomas 3 May 09, 2022
A custom-designed Spider Robot trained to walk using Deep RL in a PyBullet Simulation

SpiderBot_DeepRL Title: Implementation of Single and Multi-Agent Deep Reinforcement Learning Algorithms for a Walking Spider Robot Authors(s): Arijit

Arijit Dasgupta 9 Jul 28, 2022
Real time Human Detection Counting

In this python project, we are going to build the Human Detection and Counting System through Webcam or you can give your own video or images. This is a deep learning project on computer vision, whic

Mir Nawaz Ahmad 2 Jun 17, 2022
An inofficial PyTorch implementation of PREDATOR based on KPConv.

PREDATOR: Registration of 3D Point Clouds with Low Overlap An inofficial PyTorch implementation of PREDATOR based on KPConv. The code has been tested

ZhuLifa 14 Aug 03, 2022
Implementation of Auto-Conditioned Recurrent Networks for Extended Complex Human Motion Synthesis

acLSTM_motion This folder contains an implementation of acRNN for the CMU motion database written in Pytorch. See the following links for more backgro

Yi_Zhou 61 Sep 07, 2022
Prototypical Cross-Attention Networks for Multiple Object Tracking and Segmentation, NeurIPS 2021 Spotlight

PCAN for Multiple Object Tracking and Segmentation This is the offical implementation of paper PCAN for MOTS. We also present a trailer that consists

ETH VIS Group 328 Dec 29, 2022
Instance-wise Occlusion and Depth Orders in Natural Scenes (CVPR 2022)

Instance-wise Occlusion and Depth Orders in Natural Scenes Official source code. Appears at CVPR 2022 This repository provides a new dataset, named In

27 Dec 27, 2022
Set of methods to ensemble boxes from different object detection models, including implementation of "Weighted boxes fusion (WBF)" method.

Set of methods to ensemble boxes from different object detection models, including implementation of "Weighted boxes fusion (WBF)" method.

1.4k Jan 05, 2023
A Python library that enables ML teams to share, load, and transform data in a collaborative, flexible, and efficient way :chestnut:

Squirrel Core Share, load, and transform data in a collaborative, flexible, and efficient way What is Squirrel? Squirrel is a Python library that enab

Merantix Momentum 249 Dec 07, 2022
🔥 Real-time Super Resolution enhancement (4x) with content loss and relativistic adversarial optimization 🔥

🔥 Real-time Super Resolution enhancement (4x) with content loss and relativistic adversarial optimization 🔥

Rishik Mourya 48 Dec 20, 2022
The code for Expectation-Maximization Attention Networks for Semantic Segmentation (ICCV'2019 Oral)

EMANet News The bug in loading the pretrained model is now fixed. I have updated the .pth. To use it, download it again. EMANet-101 gets 80.99 on the

Xia Li 李夏 663 Nov 30, 2022