Official Repository for "Robust On-Policy Data Collection for Data Efficient Policy Evaluation" (NeurIPS 2021 Workshop on OfflineRL).

Overview

Robust On-Policy Data Collection for Data-Efficient Policy Evaluation

Source code of Robust On-Policy Data Collection for Data-Efficient Policy Evaluation (NeurIPS 2021 Workshop on OfflineRL).

The code is written in python 3, using Pytorch for the implementation of the deep networks and OpenAI gym for the experiment domains.

Requirements

To install the required codebase, it is recommended to create a conda or a virtual environment. Then, run the following command

pip install -r requirements.txt

Preparation

To conduct policy evaluation, we need to prepare a set of pretrained policies. You can skip this part if you already have the pretrained models in policy_models/ and the corresponding policy values in experiments/policy_info.py

Pretrained Policy

Train the policy models using REINFORCE in different domains by running:

python policy/reinfoce.py --exp_name {exp_name}

where {exp_name} can be MultiBandit, GridWorld, CartPole or CartPoleContinuous. The parameterized epsilon-greedy policies for MultiBandit and GridWorld can be obtained by running:

python policy/handmade_policy.py

Policy Value

Option 1: Run in sequence

For each policy model, the true policy value is estimated with $10^6$ Monte Carlo roll-outs by running:

python experiments/policy_value.py --policy_name {policy_name} --seed {seed} --n 10e6

This will print the average steps, true policy value and variance of returns. Make sure you copy these results into the file experiment/policy_info.py.

Option 2: Run in parallel

If you can use qsub or sbatch, you can also run jobs/jobs_value.py with different seeds in parallel and merge them by running experiments/merge_values.py to get $10^6$ Monte Carlo roll-outs. The policy values reported in this paper were obtained in this way.

Evaluation

Option 1: Run in sequence

The main running script for policy evaluation is experiments/evaluate.py. The following running command is an example of Monte Carlo estimation for Robust On-policy Acting with $\rho=1.0$ for the policy model_GridWorld_5000.pt with seeds from 0 to 199.

python experiments/evaluate.py --policy_name GridWorld_5000 --ros_epsilon 1.0 --collectors RobustOnPolicyActing --estimators MonteCarlo --eval_steps "7,14,29,59,118,237,475,951,1902,3805,7610,15221,30443,60886" --seeds "0,199"

To conduct policy evaluation with off-policy data, you need to add the following arguments to the above running command:

--combined_trajectories 100 --combined_ops_epsilon 0.10 

Option 2: Run in parallel

If you can use qsub or sbatch, you may only need to run the script jobs/jobs.py where all experiments in the paper are arranged. The log will be saved in log/ and the seed results will be saved in results/seeds. Note that we save the data collection cache in results/data and re-use it for different value estimations. To merge results of different seeds, run experiments/merge_results.py, and the merged results will be saved in results/.

Ploting

When the experiments are finished, all the figures in the paper are produced by running

python drawing/draw.py

Citing

If you use this repository in your work, please consider citing the paper

@inproceedings{zhong2021robust,
    title = {Robust On-Policy Data Collection for Data-Efficient Policy Evaluation},
    author = {Rujie Zhong, Josiah P. Hanna, Lukas Schäfer and Stefano V. Albrecht},
    booktitle = {NeurIPS Workshop on Offline Reinforcement Learning (OfflineRL)},
    year = {2021}
}
Owner
Autonomous Agents Research Group (University of Edinburgh)
Official code repositories for projects by the Autonomous Agents Research Group
Autonomous Agents Research Group (University of Edinburgh)
Semi-Supervised Semantic Segmentation via Adaptive Equalization Learning, NeurIPS 2021 (Spotlight)

Semi-Supervised Semantic Segmentation via Adaptive Equalization Learning, NeurIPS 2021 (Spotlight) Abstract Due to the limited and even imbalanced dat

Hanzhe Hu 99 Dec 12, 2022
Speedy Implementation of Instance-based Learning (IBL) agents in Python

A Python library to create single or multi Instance-based Learning (IBL) agents that are built based on Instance Based Learning Theory (IBLT) 1 Instal

0 Nov 18, 2021
Code for "Modeling Indirect Illumination for Inverse Rendering", CVPR 2022

Modeling Indirect Illumination for Inverse Rendering Project Page | Paper | Data Preparation Set up the python environment conda create -n invrender p

ZJU3DV 116 Jan 03, 2023
Coursera - Quiz & Assignment of Coursera

Coursera Assignments This repository is aimed to help Coursera learners who have difficulties in their learning process. The quiz and programming home

浅梦 828 Jan 04, 2023
[LREC] MMChat: Multi-Modal Chat Dataset on Social Media

MMChat This repo contains the code and data for the LREC2022 paper MMChat: Multi-Modal Chat Dataset on Social Media. Dataset MMChat is a large-scale d

Silver 47 Jan 03, 2023
Retinal Vessel Segmentation with Pixel-wise Adaptive Filters (ISBI 2022)

Official code of Retinal Vessel Segmentation with Pixel-wise Adaptive Filters and Consistency Training (ISBI 2022)

anonymous 14 Oct 27, 2022
This game was designed to encourage young people not to gamble on lotteries, as the probablity of correctly guessing the number is infinitesimal!

Lottery Simulator 2022 for Web Launch Application Developed by John Seong in Ontario. This game was designed to encourage young people not to gamble o

John Seong 2 Sep 02, 2022
Source code for CIKM 2021 paper for Relation-aware Heterogeneous Graph for User Profiling

RHGN Source code for CIKM 2021 paper for Relation-aware Heterogeneous Graph for User Profiling Dependencies torch==1.6.0 torchvision==0.7.0 dgl==0.7.1

Big Data and Multi-modal Computing Group, CRIPAC 6 Nov 29, 2022
retweet 4 satoshi ⚡️

rt4sat retweet 4 satoshi This bot is the codebase for https://twitter.com/rt4sat please feel free to create an issue if you saw any bugs basically thi

6 Sep 30, 2022
Release of the ConditionalQA dataset

ConditionalQA Datasets accompanying the paper ConditionalQA: A Complex Reading Comprehension Dataset with Conditional Answers. Disclaimer This dataset

14 Oct 17, 2022
Wenet STT Python

Wenet STT Python Beta Software Simple Python library, distributed via binary wheels with few direct dependencies, for easily using WeNet models for sp

David Zurow 33 Feb 21, 2022
Locally Enhanced Self-Attention: Rethinking Self-Attention as Local and Context Terms

LESA Introduction This repository contains the official implementation of Locally Enhanced Self-Attention: Rethinking Self-Attention as Local and Cont

Chenglin Yang 20 Dec 31, 2021
Neural Caption Generator with Attention

Neural Caption Generator with Attention Tensorflow implementation of "Show

Taeksoo Kim 510 Nov 30, 2022
Some code of the implements of Geological Modeling Using 3D Pixel-Adaptive and Deformable Convolutional Neural Network

3D-GMPDCNN Geological Modeling Using 3D Pixel-Adaptive and Deformable Convolutional Neural Network PyTorch implementation of "Geological Modeling Usin

5 Nov 21, 2022
This is the official Pytorch implementation of the paper "Diverse Motion Stylization for Multiple Style Domains via Spatial-Temporal Graph-Based Generative Model"

Diverse Motion Stylization (Official) This is the official Pytorch implementation of this paper. Diverse Motion Stylization for Multiple Style Domains

Soomin Park 28 Dec 16, 2022
Code for the AAAI-2022 paper: Imagine by Reasoning: A Reasoning-Based Implicit Semantic Data Augmentation for Long-Tailed Classification

Imagine by Reasoning: A Reasoning-Based Implicit Semantic Data Augmentation for Long-Tailed Classification (AAAI 2022) Prerequisite PyTorch = 1.2.0 P

16 Dec 14, 2022
HCQ: Hybrid Contrastive Quantization for Efficient Cross-View Video Retrieval

HCQ: Hybrid Contrastive Quantization for Efficient Cross-View Video Retrieval [toc] 1. Introduction This repository provides the code for our paper at

13 Dec 08, 2022
DSTC10 Track 2 - Knowledge-grounded Task-oriented Dialogue Modeling on Spoken Conversations

DSTC10 Track 2 - Knowledge-grounded Task-oriented Dialogue Modeling on Spoken Conversations This repository contains the data, scripts and baseline co

Alexa 51 Dec 17, 2022
A quick recipe to learn all about Transformers

Transformers have accelerated the development of new techniques and models for natural language processing (NLP) tasks.

DAIR.AI 772 Dec 31, 2022
Implementation of Pooling by Sliced-Wasserstein Embedding (NeurIPS 2021)

PSWE: Pooling by Sliced-Wasserstein Embedding (NeurIPS 2021) PSWE is a permutation-invariant feature aggregation/pooling method based on sliced-Wasser

Navid Naderializadeh 3 May 06, 2022