A Novel Plug-in Module for Fine-grained Visual Classification

Overview

A Novel Plug-in Module for Fine-grained Visual Classification

PWC

PWC

paper url: https://arxiv.org/abs/2202.03822

We propose a novel plug-in module that can be integrated to many common backbones, including CNN-based or Transformer-based networks to provide strongly discriminative regions. The plugin module can output pixel-level feature maps and fuse filtered features to enhance fine-grained visual classification. Experimental results show that the proposed plugin module outperforms state-ofthe-art approaches and significantly improves the accuracy to 92.77% and 92.83% on CUB200-2011 and NABirds, respectively.

framework

1. Environment setting

  • install requirements
  • replace folder timm/ to our timm/ folder (for ViT or Swin-T)

Prepare dataset

In this paper, we use 2 large bird's datasets:

Our pretrained model

Download the pretrained model from this url: https://drive.google.com/drive/folders/1ivMJl4_EgE-EVU_5T8giQTwcNQ6RPtAo?usp=sharing

OS

  • Windows10
  • Ubuntu20.04
  • macOS

2. Train

configuration file: config.py

python train.py --train_root "./CUB200-2011/train/" --val_root "./CUB200-2011/test/"

3. Evaluation

configuration file: config_eval.py

python eval.py --pretrained_path "./backup/CUB200/best.pth" --val_root "./CUB200-2011/test/"

4. Visualization

configuration file: config_plot.py

python plot_heat.py --pretrained_path "./backup/CUB200/best.pth" --img_path "./img/001.png/"

visualization

Acknowledgment

  • Thanks to timm for Pytorch implementation.

  • This work was financially supported by the National Taiwan Normal University (NTNU) within the framework of the Higher Education Sprout Project by the Ministry of Education(MOE) in Taiwan, sponsored by Ministry of Science and Technology, Taiwan, R.O.C. under Grant no. MOST 110- 2221-E-003-026, 110-2634-F-003 -007, and 110-2634-F-003 -006. In addition, we thank to National Center for Highperformance Computing (NCHC) for providing computational and storage resources.

Owner
ChouPoYung
NTNUEE AIoT Lab.
ChouPoYung
Breaking Shortcut: Exploring Fully Convolutional Cycle-Consistency for Video Correspondence Learning

Breaking Shortcut: Exploring Fully Convolutional Cycle-Consistency for Video Correspondence Learning Yansong Tang *, Zhenyu Jiang *, Zhenda Xie *, Yue

Zhenyu Jiang 12 Nov 16, 2022
Using contrastive learning and OpenAI's CLIP to find good embeddings for images with lossy transformations

Creating Robust Representations from Pre-Trained Image Encoders using Contrastive Learning Sriram Ravula, Georgios Smyrnis This is the code for our pr

Sriram Ravula 26 Dec 10, 2022
YouRefIt: Embodied Reference Understanding with Language and Gesture

YouRefIt: Embodied Reference Understanding with Language and Gesture YouRefIt: Embodied Reference Understanding with Language and Gesture by Yixin Che

16 Jul 11, 2022
Offical implementation for "Trash or Treasure? An Interactive Dual-Stream Strategy for Single Image Reflection Separation".

Trash or Treasure? An Interactive Dual-Stream Strategy for Single Image Reflection Separation (NeurIPS 2021) by Qiming Hu, Xiaojie Guo. Dependencies P

Qiming Hu 31 Dec 20, 2022
OpenIPDM is a MATLAB open-source platform that stands for infrastructures probabilistic deterioration model

Open-Source Toolbox for Infrastructures Probabilistic Deterioration Modelling OpenIPDM is a MATLAB open-source platform that stands for infrastructure

CIVML 0 Jan 20, 2022
Data-depth-inference - Data depth inference with python

Welcome! This readme will guide you through the use of the code in this reposito

Marco 3 Feb 08, 2022
Bag of Tricks for Natural Policy Gradient Reinforcement Learning

Bag of Tricks for Natural Policy Gradient Reinforcement Learning [ArXiv] Setup Python 3.8.0 pip install -r req.txt Mujoco 200 license Main Files main.

Brennan Gebotys 1 Oct 10, 2022
RM Operation can equivalently convert ResNet to VGG, which is better for pruning; and can help RepVGG perform better when the depth is large.

RMNet: Equivalently Removing Residual Connection from Networks This repository is the official implementation of "RMNet: Equivalently Removing Residua

184 Jan 04, 2023
😇A pyTorch implementation of the DeepMoji model: state-of-the-art deep learning model for analyzing sentiment, emotion, sarcasm etc

------ Update September 2018 ------ It's been a year since TorchMoji and DeepMoji were released. We're trying to understand how it's being used such t

Hugging Face 865 Dec 24, 2022
A very short and easy implementation of Quantile Regression DQN

Quantile Regression DQN Quantile Regression DQN a Minimal Working Example, Distributional Reinforcement Learning with Quantile Regression (https://arx

Arsenii Senya Ashukha 80 Sep 17, 2022
Pytorch implementation of Masked Auto-Encoder

Masked Auto-Encoder (MAE) Pytorch implementation of Masked Auto-Encoder: Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, Ross Girshick

Jiyuan 22 Dec 13, 2022
nfelo: a power ranking, prediction, and betting model for the NFL

nfelo nfelo is a power ranking, prediction, and betting model for the NFL. Nfelo take's 538's Elo framework and further adapts it for the NFL, hence t

6 Nov 22, 2022
Official implementation for “Unsupervised Low-Light Image Enhancement via Histogram Equalization Prior”

HEP Unsupervised Low-Light Image Enhancement via Histogram Equalization Prior Implementation Python3 PyTorch=1.0 NVIDIA GPU+CUDA Training process The

FengZhang 34 Dec 04, 2022
Image Matching Evaluation

Image Matching Evaluation (IME) IME provides to test any feature matching algorithm on datasets containing ground-truth homographies. Also, one can re

32 Nov 17, 2022
🚗 INGI Dakar 2K21 - Be the first one on the finish line ! 🚗

🚗 INGI Dakar 2K21 - Be the first one on the finish line ! 🚗 This year's first semester Club Info challenge will put you at the head of a car racing

ClubINFO INGI (UCLouvain) 6 Dec 10, 2021
Source code for ZePHyR: Zero-shot Pose Hypothesis Rating @ ICRA 2021

ZePHyR: Zero-shot Pose Hypothesis Rating ZePHyR is a zero-shot 6D object pose estimation pipeline. The core is a learned scoring function that compare

R-Pad - Robots Perceiving and Doing 18 Aug 22, 2022
This reposityory contains the PyTorch implementation of our paper "Generative Dynamic Patch Attack".

Generative Dynamic Patch Attack This reposityory contains the PyTorch implementation of our paper "Generative Dynamic Patch Attack". Requirements PyTo

Xiang Li 8 Nov 17, 2022
Evaluating different engineering tricks that make RL work

Reinforcement Learning Tricks, Index This repository contains the code for the paper "Distilling Reinforcement Learning Tricks for Video Games". Short

Anssi 15 Dec 26, 2022
Byzantine-robust decentralized learning via self-centered clipping

Byzantine-robust decentralized learning via self-centered clipping In this paper, we study the challenging task of Byzantine-robust decentralized trai

EPFL Machine Learning and Optimization Laboratory 4 Aug 27, 2022
Memory efficient transducer loss computation

Introduction This project implements the optimization techniques proposed in Improving RNN Transducer Modeling for End-to-End Speech Recognition to re

Fangjun Kuang 51 Nov 25, 2022