Awesome Deep Graph Clustering is a collection of SOTA, novel deep graph clustering methods

Overview

ADGC: Awesome Deep Graph Clustering

ADGC is a collection of state-of-the-art (SOTA), novel deep graph clustering methods (papers, codes and datasets). Any other interesting papers and codes are welcome. Any problems, please contact [email protected].

Made with Python GitHub stars GitHub forks visitors


What's Deep Graph Clustering?

Deep graph clustering, which aims to reveal the underlying graph structure and divide the nodes into different groups, has attracted intensive attention in recent years.

Important Survey Papers

Papers

  1. K-Means: "Algorithm AS 136: A k-means clustering algorithm" [pdf|code]
  2. DCN (ICML17): "Towards k-means-friendly spaces: Simultaneous deep learning and clustering" [pdf|code]
  3. DEC (ICML16): "Unsupervised Deep Embedding for Clustering Analysis" [pdf|code]
  4. IDEC (IJCAI17): "Improved Deep Embedded Clustering with Local Structure Preservation" [pdf|code]
  5. GAE/VGAE : "Variational Graph Auto-Encoders" [pdf|code]
  6. DAEGC (IJCAI19): "Attributed Graph Clustering: A Deep Attentional Embedding Approach" [pdf|code]
  7. ARGA/ARVGA (TCYB19): "Learning Graph Embedding with Adversarial Training Methods" [pdf|code]
  8. SDCN/SDCN_Q (WWW20): "Structural Deep Clustering Network" [pdf|code]
  9. DFCN (AAAI21): "Deep Fusion Clustering Network" [pdf|code]
  10. MVGRL (ICML20): "Contrastive Multi-View Representation Learning on Graphs" [pdf|code]

Benchmark Datasets

We divide the datasets into two categories, i.e. graph datasets and non-graph datasets. Graph datasets are some graphs in real-world, such as citation networks, social networks and so on. Non-graph datasets are NOT graph type. However, if necessary, we could construct "adjacency matrices" by K-Nearest Neighbors (KNN) algorithm.

Quick Start

  • Step1: Download all datasets from [Google Drive|Baidu Netdisk]. Optionally, download some of them from URLs in the tables (Google Drive)

  • Step2: Unzip them to ./dataset/

  • Step3: Run the ./dataset/utils.py

    Two functions load_graph_data and load_data are provided in ./dataset/utils.py to load graph datasets and non-graph datasets, respectively.

Datasets Details

  1. Graph Datasets

    Dataset Samples Dimension Edges Classes URL
    DBLP 4057 334 3528 4 dblp.zip
    CITE 3327 3703 4552 6 cite.zip
    ACM 3025 1870 13128 3 acm.zip
    AMAP 7650 745 119081 8 amap.zip
    AMAC 13752 767 245861 10 amac.zip
    PUBMED 19717 500 44325 3 pubmed.zip
    CORAFULL 19793 8710 63421 70 corafull.zip
    CORA 2708 1433 6632 7 cora.zip
    CITESEER 3327 3703 6215 6 citeseer.zip
  2. Non-graph Datasets

    Dataset Samples Dimension Type Classes URL
    USPS 9298 256 Image 10 usps.zip
    HHAR 10299 561 Record 6 hhar.zip
    REUT 10000 2000 Text 4 reut.zip

If you find this repository useful to your research or work, it is really appreciate to star this repository.​ ❤️

Owner
yueliu1999
Yue Liu is pursuing his master degree in College of Computer, NUDT. His current research interests include GNN, deep clustering and self-supervised learning.
yueliu1999
Drone-based Joint Density Map Estimation, Localization and Tracking with Space-Time Multi-Scale Attention Network

DroneCrowd Paper Detection, Tracking, and Counting Meets Drones in Crowds: A Benchmark. Introduction This paper proposes a space-time multi-scale atte

VisDrone 98 Nov 16, 2022
source code for https://arxiv.org/abs/2005.11248 "Accelerating Antimicrobial Discovery with Controllable Deep Generative Models and Molecular Dynamics"

Accelerating Antimicrobial Discovery with Controllable Deep Generative Models and Molecular Dynamics This work will be published in Nature Biomedical

International Business Machines 71 Nov 15, 2022
Contrastive Feature Loss for Image Prediction

Contrastive Feature Loss for Image Prediction We provide a PyTorch implementation of our contrastive feature loss presented in: Contrastive Feature Lo

Alex Andonian 44 Oct 05, 2022
ICCV2021 Papers with Code

ICCV2021 Papers with Code

Amusi 1.4k Jan 02, 2023
Py-FEAT: Python Facial Expression Analysis Toolbox

Py-FEAT is a suite for facial expressions (FEX) research written in Python. This package includes tools to detect faces, extract emotional facial expressions (e.g., happiness, sadness, anger), facial

Computational Social Affective Neuroscience Laboratory 147 Jan 06, 2023
Official Repo of my work for SREC Nandyal Machine Learning Bootcamp

About the Bootcamp A 3-day Machine Learning Bootcamp organised by Department of Electronics and Communication Engineering, Santhiram Engineering Colle

MS 1 Nov 29, 2021
基于Paddle框架的arcface复现

arcface-Paddle 基于Paddle框架的arcface复现 ArcFace-Paddle 本项目基于paddlepaddle框架复现ArcFace,并参加百度第三届论文复现赛,将在2021年5月15日比赛完后提供AIStudio链接~敬请期待 参考项目: InsightFace Padd

QuanHao Guo 16 Dec 15, 2022
This folder contains the implementation of the multi-relational attribute propagation algorithm.

MrAP This folder contains the implementation of the multi-relational attribute propagation algorithm. It requires the package pytorch-scatter. Please

6 Dec 06, 2022
Official implementation of deep-multi-trajectory-based single object tracking (IEEE T-CSVT 2021).

DeepMTA_PyTorch Officical PyTorch Implementation of "Dynamic Attention-guided Multi-TrajectoryAnalysis for Single Object Tracking", Xiao Wang, Zhe Che

Xiao Wang(王逍) 7 Dec 03, 2022
This is a official repository of SimViT.

SimViT This is a official repository of SimViT. We will open our models and codes about object detection and semantic segmentation soon. Our code refe

ligang 57 Dec 15, 2022
Realtime micro-expression recognition using OpenCV and PyTorch

Micro-expression Recognition Realtime micro-expression recognition from scratch using OpenCV and PyTorch Try it out with a webcam or video using the e

Irfan 35 Dec 05, 2022
Libraries, tools and tasks created and used at DeepMind Robotics.

dm_robotics: Libraries, tools, and tasks created and used for Robotics research at DeepMind. Package overview Package Summary Transformations Rigid bo

DeepMind 273 Jan 06, 2023
Differentiable Simulation of Soft Multi-body Systems

Differentiable Simulation of Soft Multi-body Systems Yi-Ling Qiao, Junbang Liang, Vladlen Koltun, Ming C. Lin [Paper] [Code] Updates The C++ backend s

YilingQiao 26 Dec 23, 2022
STBP is a way to train SNN with datasets by Backward propagation.

Spiking neural network (SNN), compared with depth neural network (DNN), has faster processing speed, lower energy consumption and more biological interpretability, which is expected to approach Stron

Ling Zhang 18 Dec 09, 2022
pytorch bert intent classification and slot filling

pytorch_bert_intent_classification_and_slot_filling 基于pytorch的中文意图识别和槽位填充 说明 基本思路就是:分类+序列标注(命名实体识别)同时训练。 使用的预训练模型:hugging face上的chinese-bert-wwm-ext 依

西西嘛呦 33 Dec 15, 2022
Improving the robustness and performance of biomedical NLP models through adversarial training

RobustBioNLP Improving the robustness and performance of biomedical NLP models through adversarial training In this repository you can find suppliment

Milad Moradi 3 Sep 20, 2022
Distributed Arcface Training in Pytorch

Distributed Arcface Training in Pytorch

3 Nov 23, 2021
Deep Learning for Time Series Forecasting.

nixtlats:Deep Learning for Time Series Forecasting [nikstla] (noun, nahuatl) Period of time. State-of-the-art time series forecasting for pytorch. Nix

Nixtla 5 Dec 06, 2022
Automatic meme generation model using Tensorflow Keras.

Memefly You can find the project at MemeflyAI. Contributors Nick Buukhalter Harsh Desai Han Lee Project Overview Trello Board Product Canvas Automatic

BloomTech Labs 2 Jan 13, 2022
A template repository for submitting a job to the Slurm Cluster installed at the DISI - University of Bologna

Cluster di HPC con GPU per esperimenti di calcolo (draft version 1.0) Per poter utilizzare il cluster il primo passo è abilitare l'account istituziona

20 Dec 16, 2022