The official repository for our paper "The Neural Data Router: Adaptive Control Flow in Transformers Improves Systematic Generalization".

Overview

Codebase for learning control flow in transformers

The official repository for our paper "The Neural Data Router: Adaptive Control Flow in Transformers Improves Systematic Generalization".

Paper: https://arxiv.org/abs/2110.07732

Please note that this repository is a cleaned-up version of the internal research repository we use. In case you encounter any problems with it, please don't hesitate to contact me.

Setup

This project requires Python 3 (tested with Python 3.8 and 3.9) and PyTorch 1.8.

pip3 install -r requirements.txt

Create a Weights and Biases account and run

wandb login

More information on setting up Weights and Biases can be found on https://docs.wandb.com/quickstart.

For plotting, LaTeX is required (to avoid Type 3 fonts and to render symbols). Installation is OS specific.

Usage

Running the experiments from the paper on a cluster

The code makes use of Weights and Biases for experiment tracking. In the sweeps directory, we provide sweep configurations for all experiments we have performed. The sweeps are officially meant for hyperparameter optimization, but we use them to run multiple configurations and seeds.

To reproduce our results, start a sweep for each of the YAML files in the sweeps directory. Run wandb agent for each of them in the root directory of the project. This will run all the experiments, and they will be displayed on the W&B dashboard. The name of the sweeps must match the name of the files in sweeps directory, except the .yaml ending. More details on how to run W&B sweeps can be found at https://docs.wandb.com/sweeps/quickstart. If you want to use a Linux cluster to run the experiments, you might find https://github.com/robertcsordas/cluster_tool useful.

For example, if you want to run NDR on compositional table lookup, run wandb sweep --name ctl_ndr sweeps/ctl_ndr.yaml. This creates the sweep and prints out its ID. Then run wandb agent <ID> with that ID.

Re-creating plots from the paper

Edit config file paper/config.json. Enter your project name in the field "wandb_project" (e.g. "username/project").

Run the scripts in the paper directory. For example:

cd paper
./run_all.sh

The output will be generated in the paper/out/ directory. Tables will be printed to stdout in latex format.

If you want to reproduce individual plots, it can be done by running individial python files in the paper directory.

Running experiments locally

It is possible to run single experiments with Tensorboard without using Weights and Biases. This is intended to be used for debugging the code locally.

If you want to run experiments locally, you can use run.py:

./run.py sweeps/ctl_ndr.yaml

If the sweep in question has multiple parameter choices, run.py will interactively prompt choices of each of them.

The experiment also starts a Tensorboard instance automatically on port 7000. If the port is already occupied, it will incrementally search for the next free port.

Note that the plotting scripts work only with Weights and Biases.

Reducing memory usage

In case some tasks won't fit on your GPU, play around with "-max_length_per_batch " argument. It can trade off memory usage/speed by slicing batches and executing them in multiple passes. Reduce it until the model fits.

BibText

@article{csordas2021neural,
      title={The Neural Data Router: Adaptive Control Flow in Transformers Improves Systematic Generalization}, 
      author={R\'obert Csord\'as and Kazuki Irie and J\"urgen Schmidhuber},
      journal={Preprint arXiv:2110.07732},
      year={2021},
      month={October}
}
Owner
Csordás Róbert
Csordás Róbert
Trustworthy AI related projects

Trustworthy AI This repository aims to include trustworthy AI related projects from Huawei Noah's Ark Lab. Current projects include: Causal Structure

HUAWEI Noah's Ark Lab 589 Dec 30, 2022
CvT-ASSD: Convolutional vision-Transformerbased Attentive Single Shot MultiBox Detector (ICTAI 2021 CCF-C 会议)The 33rd IEEE International Conference on Tools with Artificial Intelligence

CvT-ASSD including extra CvT, CvT-SSD, VGG-ASSD models original-code-website: https://github.com/albert-jin/CvT-SSD new-code-website: https://github.c

金伟强 -上海大学人工智能小渣渣~ 5 Mar 07, 2022
Deep Reinforcement Learning for Keras.

Deep Reinforcement Learning for Keras What is it? keras-rl implements some state-of-the art deep reinforcement learning algorithms in Python and seaml

Keras-RL 0 Dec 15, 2022
The reference baseline of final exam for XMU machine learning course

Mini-NICO Baseline The baseline is a reference method for the final exam of machine learning course. Requirements Installation we use /python3.7 /torc

JoaquinChou 3 Dec 29, 2021
Pytorch implementation of PTNet for high-resolution and longitudinal infant MRI synthesis

Pyramid Transformer Net (PTNet) Project | Paper Pytorch implementation of PTNet for high-resolution and longitudinal infant MRI synthesis. PTNet: A Hi

Xuzhe Johnny Zhang 6 Jun 08, 2022
A fast Evolution Strategy implementation in Python

Evostra: Evolution Strategy for Python Evolution Strategy (ES) is an optimization technique based on ideas of adaptation and evolution. You can learn

Mika 251 Dec 08, 2022
We present a regularized self-labeling approach to improve the generalization and robustness properties of fine-tuning.

Overview This repository provides the implementation for the paper "Improved Regularization and Robustness for Fine-tuning in Neural Networks", which

NEU-StatsML-Research 21 Sep 08, 2022
In this project, two programs can help you take full agvantage of time on the model training with a remote server

In this project, two programs can help you take full agvantage of time on the model training with a remote server, which can push notification to your phone about the information during model trainin

GrayLee 8 Dec 27, 2022
CVPR '21: In the light of feature distributions: Moment matching for Neural Style Transfer

In the light of feature distributions: Moment matching for Neural Style Transfer (CVPR 2021) This repository provides code to recreate results present

Nikolai Kalischek 49 Oct 13, 2022
Multi-Joint dynamics with Contact. A general purpose physics simulator.

MuJoCo Physics MuJoCo stands for Multi-Joint dynamics with Contact. It is a general purpose physics engine that aims to facilitate research and develo

DeepMind 5.2k Jan 02, 2023
DetCo: Unsupervised Contrastive Learning for Object Detection

DetCo: Unsupervised Contrastive Learning for Object Detection arxiv link News Sparse RCNN+DetCo improves from 45.0 AP to 46.5 AP(+1.5) with 3x+ms trai

Enze Xie 234 Dec 18, 2022
Source code for our paper "Improving Empathetic Response Generation by Recognizing Emotion Cause in Conversations"

Source code for our paper "Improving Empathetic Response Generation by Recognizing Emotion Cause in Conversations" this repository is maintained by bo

Yuhan Liu 24 Nov 29, 2022
Graph Transformer Architecture. Source code for

Graph Transformer Architecture Source code for the paper "A Generalization of Transformer Networks to Graphs" by Vijay Prakash Dwivedi and Xavier Bres

NTU Graph Deep Learning Lab 561 Jan 08, 2023
Hierarchical Time Series Forecasting with a familiar API

scikit-hts Hierarchical Time Series with a familiar API. This is the result from not having found any good implementations of HTS on-line, and my work

Carlo Mazzaferro 204 Dec 17, 2022
Weakly-Supervised Semantic Segmentation Network with Deep Seeded Region Growing (CVPR 2018).

Weakly-Supervised Semantic Segmentation Network with Deep Seeded Region Growing (CVPR2018) By Zilong Huang, Xinggang Wang, Jiasi Wang, Wenyu Liu and J

Zilong Huang 245 Dec 13, 2022
All course materials for the Zero to Mastery Machine Learning and Data Science course.

Zero to Mastery Machine Learning Welcome! This repository contains all of the code, notebooks, images and other materials related to the Zero to Maste

Daniel Bourke 1.6k Jan 08, 2023
I will implement Fastai in each projects present in this repository.

DEEP LEARNING FOR CODERS WITH FASTAI AND PYTORCH The repository contains a list of the projects which I have worked on while reading the book Deep Lea

Thinam Tamang 43 Dec 20, 2022
Torch code for our CVPR 2018 paper "Residual Dense Network for Image Super-Resolution" (Spotlight)

Residual Dense Network for Image Super-Resolution This repository is for RDN introduced in the following paper Yulun Zhang, Yapeng Tian, Yu Kong, Bine

Yulun Zhang 494 Dec 30, 2022
Differentiable molecular simulation of proteins with a coarse-grained potential

Differentiable molecular simulation of proteins with a coarse-grained potential This repository contains the learned potential, simulation scripts and

UCL Bioinformatics Group 44 Dec 10, 2022
PyTorch implementation for Partially View-aligned Representation Learning with Noise-robust Contrastive Loss (CVPR 2021)

2021-CVPR-MvCLN This repo contains the code and data of the following paper accepted by CVPR 2021 Partially View-aligned Representation Learning with

XLearning Group 33 Nov 01, 2022