M2MRF: Many-to-Many Reassembly of Features for Tiny Lesion Segmentation in Fundus Images

Overview

M2MRF: Many-to-Many Reassembly of Features for Tiny Lesion Segmentation in Fundus Images

This repo is the official implementation of paper "M2MRF: Many-to-Many Reassembly of Features for Tiny Lesion Segmentation in Fundus Images".

Environment

This code is based on mmsegmentation.

  • pytorch=1.6.0
  • mmsegmentation=0.8.0
  • mmcv=1.2.0
conda create -n m2mrf python=3.7 -y
conda activate m2mrf

conda install pytorch=1.6.0 torchvision cudatoolkit=10.2 -c pytorch -y
pip install mmcv-full==1.2.0 -f https://download.openmmlab.com/mmcv/dist/cu102/torch1.6.0/index.html -i https://pypi.douban.com/simple/
pip install opencv-python
pip install scipy
pip install tensorboard tensorboardX
pip install sklearn
pip install terminaltables
pip install matplotlib

cd M2MRF-Lesion-Segmentation
chmod u+x tools/*
pip install -e .

Training and testing

# prepare dataset
python tools/prepare_labels.py
python tools/augment.py

# train
CUDA_VISIBLE_DEVICES=0,1,2,3 PORT=12345 tools/dist_train.sh configs/_m2mrf_idrid/fcn_hr48-M2MRF-C_40k_idrid_bdice.py 4

# test
CUDA_VISIBLE_DEVICES=0,1,2,3 PORT=12345 tools/dist_test.sh configs/_m2mrf_idrid/fcn_hr48-M2MRF-C_40k_idrid_bdice.py /path/to/fcn_hr48-M2MRF-C_40k_idrid_bdice_iter_40000.pth 4 --eval mIoU

Results and models

We evaluate our method on IDRiD and DDR.

IDRiD

method   mIOU   mAUPR download
M2MRF-A 49.86 67.15 config | model
M2MRF-B 49.33 66.71 config | model
M2MRF-C 50.17 67.55 config | model
M2MRF-D 49.96 67.32 config | model

DDR

method   mIOU   mAUPR download
M2MRF-A 31.47 49.56 config | model
M2MRF-B 30.56 49.86 config | model
M2MRF-C 30.39 49.20 config | model
M2MRF-D 30.76 49.47 config | model

In the paper, we reported average performance over three repetitions, but our code only reported the best one among them.

Citation

If you find this code useful in your research, please consider cite:

@misc{liu2021m2mrf,
      title={M2MRF: Many-to-Many Reassembly of Features for Tiny Lesion Segmentation in Fundus Images},
      author={Qing Liu and Haotian Liu and Wei Ke and Yixiong Liang},
      year={2021},
      eprint={2111.00193},
      archivePrefix={arXiv},
      primaryClass={eess.IV}
}
Official implementation of paper Gradient Matching for Domain Generalization

Gradient Matching for Domain Generalisation This is the official PyTorch implementation of Gradient Matching for Domain Generalisation. In our paper,

94 Dec 23, 2022
Unified learning approach for egocentric hand gesture recognition and fingertip detection

Unified Gesture Recognition and Fingertip Detection A unified convolutional neural network (CNN) algorithm for both hand gesture recognition and finge

Mohammad 227 Dec 25, 2022
Implement some metaheuristics and cost functions

Metaheuristics This repot implement some metaheuristics and cost functions. Metaheuristics JAYA Implement Jaya optimizer without constraints. Cost fun

Adri1G 1 Mar 23, 2022
PICARD - Parsing Incrementally for Constrained Auto-Regressive Decoding from Language Models

This is the official implementation of the following paper: Torsten Scholak, Nathan Schucher, Dzmitry Bahdanau. PICARD - Parsing Incrementally for Con

ElementAI 217 Jan 01, 2023
Focal and Global Knowledge Distillation for Detectors

FGD Paper: Focal and Global Knowledge Distillation for Detectors Install MMDetection and MS COCO2017 Our codes are based on MMDetection. Please follow

Mesopotamia 261 Dec 23, 2022
Keras Implementation of The One Hundred Layers Tiramisu: Fully Convolutional DenseNets for Semantic Segmentation by (Simon Jégou, Michal Drozdzal, David Vazquez, Adriana Romero, Yoshua Bengio)

The One Hundred Layers Tiramisu: Fully Convolutional DenseNets for Semantic Segmentation: Work In Progress, Results can't be replicated yet with the m

Yad Konrad 196 Aug 30, 2022
MG-GCN: Scalable Multi-GPU GCN Training Framework

MG-GCN MG-GCN: multi-GPU GCN training framework. For more information, please read our paper. After cloning our repository, run git submodule update -

Translational Data Analytics (TDA) Lab @GaTech 6 Oct 24, 2022
A 3D sparse LBM solver implemented using Taichi

taichi_LBM3D Background Taichi_LBM3D is a 3D lattice Boltzmann solver with Multi-Relaxation-Time collision scheme and sparse storage structure impleme

Jianhui Yang 121 Jan 06, 2023
Pytorch implementation of "Grad-TTS: A Diffusion Probabilistic Model for Text-to-Speech"

GradTTS Unofficial Pytorch implementation of "Grad-TTS: A Diffusion Probabilistic Model for Text-to-Speech" (arxiv) About this repo This is an unoffic

HeyangXue1997 103 Dec 23, 2022
PyTorch implementation of DUL (Data Uncertainty Learning in Face Recognition, CVPR2020)

PyTorch implementation of DUL (Data Uncertainty Learning in Face Recognition, CVPR2020)

Mouxiao Huang 20 Nov 15, 2022
Link prediction using Multiple Order Local Information (MOLI)

Understanding the network formation pattern for better link prediction Authors: [e

Wu Lab 0 Oct 18, 2021
Simple implementation of Mobile-Former on Pytorch

Simple-implementation-of-Mobile-Former At present, only the model but no trained. There may be some bug in the code, and some details may be different

Acheung 103 Dec 31, 2022
PyTorch implementation of SimSiam: Exploring Simple Siamese Representation Learning

SimSiam: Exploring Simple Siamese Representation Learning This is a PyTorch implementation of the SimSiam paper: @Article{chen2020simsiam, author =

Facebook Research 834 Dec 30, 2022
A Lighting Pytorch Framework for Recommendation System, Easy-to-use and Easy-to-extend.

Torch-RecHub A Lighting Pytorch Framework for Recommendation Models, Easy-to-use and Easy-to-extend. 安装 pip install torch-rechub 主要特性 scikit-learn风格易用

Mincai Lai 67 Jan 04, 2023
hySLAM is a hybrid SLAM/SfM system designed for mapping

HySLAM Overview hySLAM is a hybrid SLAM/SfM system designed for mapping. The system is based on ORB-SLAM2 with some modifications and refactoring. Raú

Brian Hopkinson 15 Oct 10, 2022
Unofficial PyTorch implementation of Neural Additive Models (NAM) by Agarwal, et al.

nam-pytorch Unofficial PyTorch implementation of Neural Additive Models (NAM) by Agarwal, et al. [abs, pdf] Installation You can access nam-pytorch vi

Rishabh Anand 11 Mar 14, 2022
Decompose to Adapt: Cross-domain Object Detection via Feature Disentanglement

Decompose to Adapt: Cross-domain Object Detection via Feature Disentanglement In this project, we proposed a Domain Disentanglement Faster-RCNN (DDF)

19 Nov 24, 2022
PFFDTD is an open-source FDTD simulator for 3D room acoustics

PFFDTD is an open-source FDTD simulator for 3D room acoustics

Brian Hamilton 34 Nov 24, 2022
Applying CLIP to Point Cloud Recognition.

PointCLIP: Point Cloud Understanding by CLIP This repository is an official implementation of the paper 'PointCLIP: Point Cloud Understanding by CLIP'

Renrui Zhang 175 Dec 24, 2022
PyTorch implementation of ARM-Net: Adaptive Relation Modeling Network for Structured Data.

A ready-to-use framework of latest models for structured (tabular) data learning with PyTorch. Applications include recommendation, CRT prediction, healthcare analytics, and etc.

48 Nov 30, 2022