Explore extreme compression for pre-trained language models

Overview

Explore extreme compression for pre-trained language models

Code for paper "Exploring extreme parameter compression for pre-trained language models ICLR2022"

Before Training

install some libraries

 pip install tensorly==0.5.0

Torch is needed, torch 1.0-1.4 is preferred

Install horovod for distributed learning

Configuration Install horovod on GPU

pip install horovod[pytorch]

loading pre-trained models

wget https://huggingface.co/bert-base-uncased/resolve/main/pytorch_model.bin -P  models/bert-base-uncased
wget https://huggingface.co/bert-base-uncased/resolve/main/vocab.txt -P  models/bert-base-uncased
cp models/bert-base-uncased/pytorch_model.bin models/bert-td-72-384/pytorch_model.bin 
cp models/bert-base-uncased/vocab.txt models/bert-td-72-384/vocab.txt

generate training data for given corpora (e.g., saved in the path "corpora" )

python pregenerate_training_data.py --train_corpus ${CORPUS_RAW} \ 
                  --bert_model ${BERT_BASE_DIR}$ \
                  --reduce_memory --do_lower_case \
                  --epochs_to_generate 3 \
                  --output_dir ${CORPUS_JSON_DIR}$ 

task data augmentation

python data_augmentation.py --pretrained_bert_model ${BERT_BASE_DIR}$ \
                            --glove_embs ${GLOVE_EMB}$ \
                            --glue_dir ${GLUE_DIR}$ \  
                            --task_name ${TASK_NAME}$

Decomposing BERT

decomposition and general distillation

Run with horovod

mpirun -np 8 -bind-to none -map-by slot -x NCCL_DEBUG=INFO -x LD_LIBRARY_PATH -x PATH -mca pml ob1 -mca btl ^openib python3 general_distill.py --teacher_model models/bert-base-uncased --student_model models/bert-gd-72-384 --pregenerated_data data/pregenerated_data --num_train_epochs 2.0 --train_batch_size 32 --output_dir output/bert-gd-72-384 -use_swap --do_lower_case

To restrict sharing among SAN or FFN, add "ops" and set "ops" to be "san" or "ffn" in bert-gd-72-384/config.json

ops = "san"

Evaluation

Task distillation with data augmentation in fine-tuning phase

Rename a pretrained model as "", for instance, change step_0_pytorch_model.bin to pytorch_model.bin, and change load_compressed_model from false to true in output/config.json

Task distillation for distributed training

CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python -m torch.distributed.launch --nproc_per_node=8 task_distill.py --teacher_model models/bert-base-uncasedi/STS-B --student_model models/bert-gd-72-384 --task_name STS-B --aug_train --data_dir data/glue_data/SST-2 --max_seq_length 128 --train_batch_size 32 --aug_train --learning_rate 2e-5 --num_train_epochs 3.0 --output_dir ./output/36-256-STS-B

Task distillation for single gpu

python3  task_distill.py  --teacher_model models/bert-base-uncased   --student_model  models/bert-td-72-384  --output output_demo  --data_dir  data/glue_data/SST-2   --task_name  SST-2  --do_lower_case --aug_train   

For augmentation, you should add --aug_train

Get test result for model

python run_glue.py --model_name_or_path  models/bert-td-72-384/SST-2 --task_name SST-2 --do_eval --do_predict --data_dir data/glue_data/STS-B --max_seq_length 128 --save_steps 500 --save_total_limit 2 --output_dir ./output/SST-2
Owner
twinkle
Stay hungry, stay foolish.
twinkle
Using contrastive learning and OpenAI's CLIP to find good embeddings for images with lossy transformations

The official code for the paper "Inverse Problems Leveraging Pre-trained Contrastive Representations" (to appear in NeurIPS 2021).

Sriram Ravula 26 Dec 10, 2022
Erpnext app for make employee salary on payroll entry based on one or more project with percentage for all project equal 100 %

Project Payroll this app for make payroll for employee based on projects like project on 30 % and project 2 70 % as account dimension it makes genral

Ibrahim Morghim 8 Jan 02, 2023
Code and data for ImageCoDe, a contextual vison-and-language benchmark

ImageCoDe This repository contains code and data for ImageCoDe: Image Retrieval from Contextual Descriptions. Data All collected descriptions for the

McGill NLP 27 Dec 02, 2022
An Unsupervised Graph-based Toolbox for Fraud Detection

An Unsupervised Graph-based Toolbox for Fraud Detection Introduction: UGFraud is an unsupervised graph-based fraud detection toolbox that integrates s

SafeGraph 99 Dec 11, 2022
This repo contains the official implementations of EigenDamage: Structured Pruning in the Kronecker-Factored Eigenbasis

EigenDamage: Structured Pruning in the Kronecker-Factored Eigenbasis This repo contains the official implementations of EigenDamage: Structured Prunin

Chaoqi Wang 107 Apr 20, 2022
A PyTorch implementation of EfficientNet and EfficientNetV2 (coming soon!)

EfficientNet PyTorch Quickstart Install with pip install efficientnet_pytorch and load a pretrained EfficientNet with: from efficientnet_pytorch impor

Luke Melas-Kyriazi 7.2k Jan 06, 2023
Video lie detector using xgboost - A video lie detector using OpenFace and xgboost

video_lie_detector_using_xgboost a video lie detector using OpenFace and xgboost

2 Jan 11, 2022
An implementation of based on pytorch and mmcv

FisherPruning-Pytorch An implementation of Group Fisher Pruning for Practical Network Compression based on pytorch and mmcv Main Functions Pruning f

Peng Lu 15 Dec 17, 2022
This repository contains a Ruby API for utilizing TensorFlow.

tensorflow.rb Description This repository contains a Ruby API for utilizing TensorFlow. Linux CPU Linux GPU PIP Mac OS CPU Not Configured Not Configur

somatic labs 825 Dec 26, 2022
Code for "Offline Meta-Reinforcement Learning with Advantage Weighting" [ICML 2021]

Offline Meta-Reinforcement Learning with Advantage Weighting (MACAW) MACAW code used for the experiments in the ICML 2021 paper. Installing the enviro

Eric Mitchell 28 Jan 01, 2023
Implementation of Memory-Compressed Attention, from the paper "Generating Wikipedia By Summarizing Long Sequences"

Memory Compressed Attention Implementation of the Self-Attention layer of the proposed Memory-Compressed Attention, in Pytorch. This repository offers

Phil Wang 47 Dec 23, 2022
A library to inspect itermediate layers of PyTorch models.

A library to inspect itermediate layers of PyTorch models. Why? It's often the case that we want to inspect intermediate layers of a model without mod

archinet.ai 380 Dec 28, 2022
Super-BPD: Super Boundary-to-Pixel Direction for Fast Image Segmentation (CVPR 2020)

Super-BPD for Fast Image Segmentation (CVPR 2020) Introduction We propose direction-based super-BPD, an alternative to superpixel, for fast generic im

189 Dec 07, 2022
FFTNet vocoder implementation

Unofficial Implementation of FFTNet vocode paper. implement the model. implement tests. overfit on a single batch (sanity check). linearize weights fo

Eren Gölge 81 Dec 08, 2022
Code for "FPS-Net: A convolutional fusion network for large-scale LiDAR point cloud segmentation".

FPS-Net Code for "FPS-Net: A convolutional fusion network for large-scale LiDAR point cloud segmentation", accepted by ISPRS journal of Photogrammetry

15 Nov 30, 2022
Galileo library for large scale graph training by JD

近年来,图计算在搜索、推荐和风控等场景中获得显著的效果,但也面临超大规模异构图训练,与现有的深度学习框架Tensorflow和PyTorch结合等难题。 Galileo(伽利略)是一个图深度学习框架,具备超大规模、易使用、易扩展、高性能、双后端等优点,旨在解决超大规模图算法在工业级场景的落地难题,提

JD Galileo Team 128 Nov 29, 2022
K-FACE Analysis Project on Pytorch

Installation Setup with Conda # create a new environment conda create --name insightKface python=3.7 # or over conda activate insightKface #install t

Jung Jun Uk 7 Nov 10, 2022
Object tracking using YOLO and a tracker(KCF, MOSSE, CSRT) in openCV

Object tracking using YOLO and a tracker(KCF, MOSSE, CSRT) in openCV File YOLOv3 weight can be downloaded

Ngoc Quyen Ngo 2 Mar 27, 2022
High performance distributed framework for training deep learning recommendation models based on PyTorch.

High performance distributed framework for training deep learning recommendation models based on PyTorch.

340 Dec 30, 2022
NEATEST: Evolving Neural Networks Through Augmenting Topologies with Evolution Strategy Training

NEATEST: Evolving Neural Networks Through Augmenting Topologies with Evolution Strategy Training

Göktuğ Karakaşlı 16 Dec 05, 2022