VarCLR: Variable Semantic Representation Pre-training via Contrastive Learning

Overview
   

Unittest GitHub stars GitHub license Black

VarCLR: Variable Representation Pre-training via Contrastive Learning

New: Paper accepted by ICSE 2022. Preprint at arXiv!

This repository contains code and pre-trained models for VarCLR, a contrastive learning based approach for learning semantic representations of variable names that effectively captures variable similarity, with state-of-the-art results on [email protected].

Step 0: Install

pip install -e .

Step 1: Load a Pre-trained VarCLR Model

from varclr.models import Encoder
model = Encoder.from_pretrained("varclr-codebert")

Step 2: VarCLR Variable Embeddings

Get embedding of one variable

emb = model.encode("squareslab")
print(emb.shape)
# torch.Size([1, 768])

Get embeddings of list of variables (supports batching)

emb = model.encode(["squareslab", "strudel"])
print(emb.shape)
# torch.Size([2, 768])

Step 2: Get VarCLR Similarity Scores

Get similarity scores of N variable pairs

print(model.score("squareslab", "strudel"))
# [0.42812108993530273]
print(model.score(["squareslab", "average", "max", "max"], ["strudel", "mean", "min", "maximum"]))
# [0.42812108993530273, 0.8849745988845825, 0.8035818338394165, 0.889922022819519]

Get pairwise (N * M) similarity scores from two lists of variables

variable_list = ["squareslab", "strudel", "neulab"]
print(model.cross_score("squareslab", variable_list))
# [[1.0000007152557373, 0.4281214475631714, 0.7207341194152832]]
print(model.cross_score(variable_list, variable_list))
# [[1.0000007152557373, 0.4281214475631714, 0.7207341194152832],
#  [0.4281214475631714, 1.0000004768371582, 0.549992561340332],
#  [0.7207341194152832, 0.549992561340332, 1.000000238418579]]

Step 3: Reproduce IdBench Benchmark Results

Load the IdBench benchmark

from varclr.benchmarks import Benchmark

# Similarity on IdBench-Medium
b1 = Benchmark.build("idbench", variant="medium", metric="similarity")
# Relatedness on IdBench-Large
b2 = Benchmark.build("idbench", variant="large", metric="relatedness")

Compute VarCLR scores and evaluate

id1_list, id2_list = b1.get_inputs()
predicted = model.score(id1_list, id2_list)
print(b1.evaluate(predicted))
# {'spearmanr': 0.5248567181503295, 'pearsonr': 0.5249843473193132}

print(b2.evaluate(model.score(*b2.get_inputs())))
# {'spearmanr': 0.8012168379981921, 'pearsonr': 0.8021791703187449}

Let's compare with the original CodeBERT

codebert = Encoder.from_pretrained("codebert")
print(b1.evaluate(codebert.score(*b1.get_inputs())))
# {'spearmanr': 0.2056582946575104, 'pearsonr': 0.1995058696927054}
print(b2.evaluate(codebert.score(*b2.get_inputs())))
# {'spearmanr': 0.3909218857993804, 'pearsonr': 0.3378219622284688}

Results on IdBench benchmarks

Similarity

Method Small Medium Large
FT-SG 0.30 0.29 0.28
LV 0.32 0.30 0.30
FT-cbow 0.35 0.38 0.38
VarCLR-Avg 0.47 0.45 0.44
VarCLR-LSTM 0.50 0.49 0.49
VarCLR-CodeBERT 0.53 0.53 0.51
Combined-IdBench 0.48 0.59 0.57
Combined-VarCLR 0.66 0.65 0.62

Relatedness

Method Small Medium Large
LV 0.48 0.47 0.48
FT-SG 0.70 0.71 0.68
FT-cbow 0.72 0.74 0.73
VarCLR-Avg 0.67 0.66 0.66
VarCLR-LSTM 0.71 0.70 0.69
VarCLR-CodeBERT 0.79 0.79 0.80
Combined-IdBench 0.71 0.78 0.79
Combined-VarCLR 0.79 0.81 0.85

Pre-train your own VarCLR models

Coming soon.

Cite

If you find VarCLR useful in your research, please cite our [email protected]:

@misc{chen2021varclr,
      title={VarCLR: Variable Semantic Representation Pre-training via Contrastive Learning},
      author={Qibin Chen and Jeremy Lacomis and Edward J. Schwartz and Graham Neubig and Bogdan Vasilescu and Claire Le Goues},
      year={2021},
      eprint={2112.02650},
      archivePrefix={arXiv},
      primaryClass={cs.SE}
}
Owner
squaresLab
squaresLab
NHL 94 AI contests

nhl94-ai The end goals of this project is to: Train Models that play NHL 94 Support AI vs AI contests in NHL 94 Provide an improved AI opponent for NH

Mathieu Poliquin 2 Dec 06, 2021
Code for ACL'2021 paper WARP πŸŒ€ Word-level Adversarial ReProgramming

Code for ACL'2021 paper WARP πŸŒ€ Word-level Adversarial ReProgramming. Outperforming `GPT-3` on SuperGLUE Few-Shot text classification.

YerevaNN 75 Nov 06, 2022
Torch implementation of "Enhanced Deep Residual Networks for Single Image Super-Resolution"

NTIRE2017 Super-resolution Challenge: SNU_CVLab Introduction This is our project repository for CVPR 2017 Workshop (2nd NTIRE). We, Team SNU_CVLab, (B

Bee Lim 625 Dec 30, 2022
Asymmetric Bilateral Motion Estimation for Video Frame Interpolation, ICCV2021

ABME (ICCV2021) Junheum Park, Chul Lee, and Chang-Su Kim Official PyTorch Code for "Asymmetric Bilateral Motion Estimation for Video Frame Interpolati

Junheum Park 86 Dec 28, 2022
MVGCN: a novel multi-view graph convolutional network (MVGCN) framework for link prediction in biomedical bipartite networks.

MVGCN MVGCN: a novel multi-view graph convolutional network (MVGCN) framework for link prediction in biomedical bipartite networks. Developer: Fu Hait

13 Dec 01, 2022
Using multidimensional LSTM neural networks to create a forecast for Bitcoin price

Multidimensional LSTM BitCoin Time Series Using multidimensional LSTM neural networks to create a forecast for Bitcoin price. For notes around this co

Jakob Aungiers 318 Dec 14, 2022
ppo_pytorch_cpp - an implementation of the proximal policy optimization algorithm for the C++ API of Pytorch

PPO Pytorch C++ This is an implementation of the proximal policy optimization algorithm for the C++ API of Pytorch. It uses a simple TestEnvironment t

Martin Huber 59 Dec 09, 2022
Discriminative Region Suppression for Weakly-Supervised Semantic Segmentation

Discriminative Region Suppression for Weakly-Supervised Semantic Segmentation (AAAI 2021) Official pytorch implementation of our paper: Discriminative

Beom 74 Dec 27, 2022
Strongly local p-norm-cut algorithms for semi-supervised learning and local graph clustering

Strongly local p-norm-cut algorithms for semi-supervised learning and local graph clustering

Meng Liu 2 Jul 19, 2022
Official Implementation of LARGE: Latent-Based Regression through GAN Semantics

LARGE: Latent-Based Regression through GAN Semantics [Project Website] [Google Colab] [Paper] LARGE: Latent-Based Regression through GAN Semantics Yot

83 Dec 06, 2022
Official pytorch implementation of "Feature Stylization and Domain-aware Contrastive Loss for Domain Generalization" ACMMM 2021 (Oral)

Feature Stylization and Domain-aware Contrastive Loss for Domain Generalization This is an official implementation of "Feature Stylization and Domain-

22 Sep 22, 2022
An AI Assistant More Than a Toolkit

tymon An AI Assistant More Than a Toolkit The reason for creating framework tymon is simple. making AI more like an assistant, helping us to complete

TymonXie 46 Oct 24, 2022
Twin-deep neural network for semi-supervised learning of materials properties

Deep Semi-Supervised Teacher-Student Material Synthesizability Prediction Citation: Semi-supervised teacher-student deep neural network for materials

MLEG 3 Dec 14, 2022
[ICCV 2021] Official Pytorch implementation for Discriminative Region-based Multi-Label Zero-Shot Learning SOTA results on NUS-WIDE and OpenImages

Discriminative Region-based Multi-Label Zero-Shot Learning (ICCV 2021) [arXiv][Project page coming soon] Sanath Narayan*, Akshita Gupta*, Salman Kh

Akshita Gupta 54 Nov 21, 2022
PyTorch implementation of MoCo: Momentum Contrast for Unsupervised Visual Representation Learning

MoCo: Momentum Contrast for Unsupervised Visual Representation Learning This is a PyTorch implementation of the MoCo paper: @Article{he2019moco, aut

Meta Research 3.7k Jan 02, 2023
PyTorch wrappers for using your model in audacity!

audacitorch This package contains utilities for prepping PyTorch audio models for use in Audacity. More specifically, it provides abstract classes for

Hugo Flores GarcΓ­a 130 Dec 14, 2022
Object detection, 3D detection, and pose estimation using center point detection:

Objects as Points Object detection, 3D detection, and pose estimation using center point detection: Objects as Points, Xingyi Zhou, Dequan Wang, Phili

Xingyi Zhou 6.7k Jan 03, 2023
Streamlit component for TensorBoard, TensorFlow's visualization toolkit

streamlit-tensorboard This is a work-in-progress, providing a function to embed TensorBoard, TensorFlow's visualization toolkit, in Streamlit apps. In

Snehan Kekre 27 Nov 13, 2022
The source code for CATSETMAT: Cross Attention for Set Matching in Bipartite Hypergraphs

catsetmat The source code for CATSETMAT: Cross Attention for Set Matching in Bipartite Hypergraphs To be able to run it, add catsetmat to PYTHONPATH H

2 Dec 19, 2022
PyElecCL - Electron Monte Carlo Second Checks

PyElecCL Python program to perform second checks for electron Monte Carlo radiat

Reese Haywood 3 Feb 22, 2022