The official implementation of Equalization Loss v1 & v2 (CVPR 2020, 2021) based on MMDetection.

Related tags

Deep Learningeqlv2
Overview

The Equalization Losses for Long-tailed Object Detection and Instance Segmentation

This repo is official implementation CVPR 2021 paper: Equalization Loss v2: A New Gradient Balance Approach for Long-tailed Object Detection and CVPR 2020 paper: Equalization loss for long-tailed object recognition

Besides the equalization losses, this repo also includes some other algorithms:

  • BAGS (Balance GroupSoftmax)
  • cRT (classifier re-training)
  • LWS (Learnable Weight Scaling)

Requirements

We test our codes on MMDetection V2.3, other versions should also be ok.

Prepare LVIS Dataset

for images

LVIS uses same images as COCO's, so you need to donwload COCO dataset at folder ($COCO), and link those train, val under folder lvis($LVIS).

mkdir -p data/lvis
ln -s $COCO/train $LVIS
ln -s $COCO/val $LVIS
ln -s $COCO/test $LVIS

for annotations

Download the annotations from lvis webset

cd $LVIS
mkdir annotations

then places the annotations at folder ($LVIS/annotations)

Finally you will have the file structure like below:

data
  ├── lvis
  |   ├── annotations
  │   │   │   ├── lvis_v1_val.json
  │   │   │   ├── lvis_v1_train.json
  │   ├── train2017
  │   │   ├── 000000004134.png
  │   │   ├── 000000031817.png
  │   │   ├── ......
  │   ├── val2017
  │   ├── test2017

for API

The official lvis-api and mmlvis can lead to some bugs of multiprocess. See issue

So you can install this LVIS API from my modified repo.

pip install git+https://github.com/tztztztztz/lvis-api.git

Testing with pretrain_models

# ./tools/dist_test.sh ${CONFIG} ${CHECKPOINT} ${GPU_NUM} [--out ${RESULT_FILE}] [--eval ${EVAL_METRICS}]
./tools/dist_test.sh configs/eqlv2/eql_r50_8x2_1x.py data/pretrain_models/eql_r50_8x2_1x.pth 8 --out results.pkl --eval bbox segm

Training

# ./tools/dist_train.sh ${CONFIG} ${GPU_NUM}
./tools/dist_train.sh ./configs/end2end/eql_r50_8x2_1x.py 8 

Once you finished the training, you will get the evaluation metric like this:

bbox AP

 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=300 catIds=all] = 0.242
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=300 catIds=all] = 0.401
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=300 catIds=all] = 0.254
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=     s | maxDets=300 catIds=all] = 0.181
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=     m | maxDets=300 catIds=all] = 0.317
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=     l | maxDets=300 catIds=all] = 0.367
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=300 catIds=  r] = 0.135
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=300 catIds=  c] = 0.225
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=300 catIds=  f] = 0.308
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=300 catIds=all] = 0.331
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=     s | maxDets=300 catIds=all] = 0.223
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=     m | maxDets=300 catIds=all] = 0.417
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=     l | maxDets=300 catIds=all] = 0.497
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=300 catIds=  r] = 0.197
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=300 catIds=  c] = 0.308
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=300 catIds=  f] = 0.415

mask AP

 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=300 catIds=all] = 0.237
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=300 catIds=all] = 0.372
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=300 catIds=all] = 0.251
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=     s | maxDets=300 catIds=all] = 0.169
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=     m | maxDets=300 catIds=all] = 0.316
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=     l | maxDets=300 catIds=all] = 0.370
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=300 catIds=  r] = 0.149
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=300 catIds=  c] = 0.228
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=300 catIds=  f] = 0.286
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=300 catIds=all] = 0.326
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=     s | maxDets=300 catIds=all] = 0.210
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=     m | maxDets=300 catIds=all] = 0.415
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=     l | maxDets=300 catIds=all] = 0.495
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=300 catIds=  r] = 0.213
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=300 catIds=  c] = 0.313
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=300 catIds=  f] = 0.389

We place ours configs file in ./configs/

  • ./configs/end2end: eqlv2 and other end2end methods
  • ./configs/decouple decoupled-based methods

How to train decouple training methods.

  1. Train the baseline model (or EQL v2).
  2. Prepare the pretrained checkpoint
  # suppose you've trained baseline model
  cd r50_1x
  python ../tools/ckpt_surgery.py --ckpt-path epoch_12.pth --method remove
  # if you want to train LWS, you should choose method 'reset'
  1. Start training with configs
  # ./tools/dist_train.sh ./configs/decouple/bags_r50_8x2_1x.py 8
  # ./tools/dist_train.sh ./configs/decouple/lws_r50_8x2_1x.py 8
  ./tools/dist_train.sh ./configs/decouple/crt_r50_8x2_1x.py 8

Pretrained Models on LVIS

Methods end2end AP APr APc APf pretrained_model
Baseline 16.1 0.0 12.0 27.4 model
EQL 18.6 2.1 17.4 27.2 model
RFS 22.2 11.5 21.2 28.0 model
LWS × 17.0 2.0 13.5 27.4 model
cRT × 22.1 11.9 20.2 29.0 model
BAGS × 23.1 13.1 22.5 28.2 model
EQLv2 23.7 14.9 22.8 28.6 model

How to train EQLv2 on OpenImages

1. Download the data

Download openimages v5 images from link, The folder will be

openimages
    ├── train
    ├── validation
    ├── test

Download the annotations for Challenge 2019 from link, The folder will be

annotations
    ├── challenge-2019-classes-description-500.csv
    ├── challenge-2019-train-detection-human-imagelabels.csv
    ├── challenge-2019-train-detection-bbox.csv
    ├── challenge-2019-validation-detection-bbox.csv
    ├── challenge-2019-validation-detection-human-imagelabels.csv
    ├── ...

2. Convert the .csv to coco-like .json file.

cd tools/openimages2coco/
python convert_annotations.py -p PATH_TO_OPENIMAGES --version challenge_2019 --task bbox 

You may need to donwload the data directory from https://github.com/bethgelab/openimages2coco/tree/master/data and place it at $project_dir/tools/openimages2coco/

3. Train models

  ./tools/dist_train.sh ./configs/openimages/eqlv2_r50_fpn_8x2_2x.py 8

Other configs can be found at ./configs/openimages/

4. Inference and output the json results file

./tools/dist_test.sh ./configs/openimages/eqlv2_r50_fpn_8x2_2x.py openimage_eqlv2_2x/epoch_1.pth 8 --format-only --options "jsonfile_prefix=openimage_eqlv2_2x/results"" 

Then you will get results.bbox.json under folder openimage_eqlv2

5. Convert coco-like json result file to openimage-like csv results file

cd $project_dir/tools/openimages2coco/
python convert_predictions.py -p ../../openimage_eqlv2/results.bbox.json --subset validation

Then you will get results.bbox.csv under folder openimage_eqlv2

6. Evaluate results file using official API

Please refer this link

After this, you will see something like this.

OpenImagesDetectionChallenge_Precision/[email protected],0.5263230244227198                                                                                                                     OpenImagesDetectionChallenge_PerformanceByCategory/[email protected]/b'/m/061hd_',0.4198356678732905                                                                                             OpenImagesDetectionChallenge_PerformanceByCategory/[email protected]/b'/m/06m11',0.40262261023434986                                                                                             OpenImagesDetectionChallenge_PerformanceByCategory/[email protected]/b'/m/03120',0.5694096972722996                                                                                              OpenImagesDetectionChallenge_PerformanceByCategory/[email protected]/b'/m/01kb5b',0.20532245532245533                                                                                            OpenImagesDetectionChallenge_PerformanceByCategory/[email protected]/b'/m/0120dh',0.7934685035604202                                                                                             OpenImagesDetectionChallenge_PerformanceByCategory/[email protected]/b'/m/0dv5r',0.7029194449221794                                                                                              OpenImagesDetectionChallenge_PerformanceByCategory/[email protected]/b'/m/0jbk',0.5959245714028935

7. Parse the AP file and output the grouped AP

cd $project_dir

PYTHONPATH=./:$PYTHONPATH python tools/parse_openimage_metric.py --file openimage_eqlv2_2x/metric

And you will get:

mAP 0.5263230244227198
mAP0: 0.4857693606436219
mAP1: 0.52047262478471
mAP2: 0.5304580597832517
mAP3: 0.5348747991854581
mAP4: 0.5588236678031849

Main Results on OpenImages

Methods AP AP1 AP2 AP3 AP4 AP5
Faster-R50 43.1 26.3 42.5 45.2 48.2 52.6
EQL 45.3 32.7 44.6 47.3 48.3 53.1
EQLv2 52.6 48.6 52.0 53.0 53.4 55.8
Faster-R101 46.0 29.2 45.5 49.3 50.9 54.7
EQL 48.0 36.1 47.2 50.5 51.0 55.0
EQLv2 55.1 51.0 55.2 56.6 55.6 57.5

Citation

If you use the equalization losses, please cite our papers.

@article{tan2020eqlv2,
  title={Equalization Loss v2: A New Gradient Balance Approach for Long-tailed Object Detection},
  author={Tan, Jingru and Lu, Xin and Zhang, Gang and Yin, Changqing and Li, Quanquan},
  journal={arXiv preprint arXiv:2012.08548},
  year={2020}
}
@inproceedings{tan2020equalization,
  title={Equalization loss for long-tailed object recognition},
  author={Tan, Jingru and Wang, Changbao and Li, Buyu and Li, Quanquan and Ouyang, Wanli and Yin, Changqing and Yan, Junjie},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  pages={11662--11671},
  year={2020}
}

Credits

The code for converting openimage to LVIS is from this repo.

Owner
Jingru Tan
Jingru Tan
Implementation for Panoptic-PolarNet (CVPR 2021)

Panoptic-PolarNet This is the official implementation of Panoptic-PolarNet. [ArXiv paper] Introduction Panoptic-PolarNet is a fast and robust LiDAR po

Zixiang Zhou 126 Jan 01, 2023
WebUAV-3M: A Benchmark Unveiling the Power of Million-Scale Deep UAV Tracking

WebUAV-3M: A Benchmark Unveiling the Power of Million-Scale Deep UAV Tracking [Paper Link] Abstract In this work, we contribute a new million-scale Un

25 Jan 01, 2023
Lex Rosetta: Transfer of Predictive Models Across Languages, Jurisdictions, and Legal Domains

Lex Rosetta: Transfer of Predictive Models Across Languages, Jurisdictions, and Legal Domains This is an accompanying repository to the ICAIL 2021 pap

4 Dec 16, 2021
PyTorch code for EMNLP 2021 paper: Don't be Contradicted with Anything! CI-ToD: Towards Benchmarking Consistency for Task-oriented Dialogue System

Don’t be Contradicted with Anything!CI-ToD: Towards Benchmarking Consistency for Task-oriented Dialogue System This repository contains the PyTorch im

Libo Qin 25 Sep 06, 2022
StellarGraph - Machine Learning on Graphs

StellarGraph Machine Learning Library StellarGraph is a Python library for machine learning on graphs and networks. Table of Contents Introduction Get

S T E L L A R 2.6k Jan 05, 2023
Hypersearch weight debugging and losses tutorial

tutorial Activate tensorboard option Running TensorBoard remotely When working on a remote server, you can use SSH tunneling to forward the port of th

1 Dec 11, 2021
codes for "Scheduled Sampling Based on Decoding Steps for Neural Machine Translation" (long paper of EMNLP-2022)

Scheduled Sampling Based on Decoding Steps for Neural Machine Translation (EMNLP-2021 main conference) Contents Overview Background Quick to Use Furth

Adaxry 13 Jul 25, 2022
PyTorch implementations of neural network models for keyword spotting

Honk: CNNs for Keyword Spotting Honk is a PyTorch reimplementation of Google's TensorFlow convolutional neural networks for keyword spotting, which ac

Castorini 475 Dec 15, 2022
Reimplementation of Dynamic Multi-scale filters for Semantic Segmentation.

Paddle implementation of Dynamic Multi-scale filters for Semantic Segmentation.

Hongqiang.Wang 2 Nov 01, 2021
A basic duplicate image detection service using perceptual image hash functions and nearest neighbor search, implemented using faiss, fastapi, and imagehash

Duplicate Image Detection Getting Started Install dependencies pip install -r requirements.txt Run service python main.py Testing Test with pytest How

Matthew Podolak 21 Nov 11, 2022
A Graph Neural Network Tool for Recovering Dense Sub-graphs in Random Dense Graphs.

PYGON A Graph Neural Network Tool for Recovering Dense Sub-graphs in Random Dense Graphs. Installation This code requires to install and run the graph

Yoram Louzoun's Lab 0 Jun 25, 2021
Demonstration of the Model Training as a CI/CD System in Vertex AI

Model Training as a CI/CD System This project demonstrates the machine model training as a CI/CD system in GCP platform. You will see more detailed wo

Chansung Park 19 Dec 28, 2022
Human pose estimation from video plays a critical role in various applications such as quantifying physical exercises, sign language recognition, and full-body gesture control.

Pose Detection Project Description: Human pose estimation from video plays a critical role in various applications such as quantifying physical exerci

Hassan Shahzad 2 Jan 17, 2022
C3d-pytorch - Pytorch porting of C3D network, with Sports1M weights

C3D for pytorch This is a pytorch porting of the network presented in the paper Learning Spatiotemporal Features with 3D Convolutional Networks How to

Davide Abati 311 Jan 06, 2023
ANN model for prediction a spatio-temporal distribution of supercooled liquid in mixed-phase clouds using Doppler cloud radar spectra.

VOODOO Revealing supercooled liquid beyond lidar attenuation Explore the docs » Report Bug · Request Feature Table of Contents About The Project Built

remsens-lim 2 Apr 28, 2022
Official Pytorch and JAX implementation of "Efficient-VDVAE: Less is more"

The Official Pytorch and JAX implementation of "Efficient-VDVAE: Less is more" Arxiv preprint Louay Hazami   ·   Rayhane Mama   ·   Ragavan Thurairatn

Rayhane Mama 144 Dec 23, 2022
INSPIRED: A Transparent Dialogue Dataset for Interactive Semantic Parsing

INSPIRED: A Transparent Dialogue Dataset for Interactive Semantic Parsing Existing studies on semantic parsing focus primarily on mapping a natural-la

7 Aug 22, 2022
AdelaiDepth is an open source toolbox for monocular depth prediction.

AdelaiDepth is an open source toolbox for monocular depth prediction.

Adelaide Intelligent Machines (AIM) Group 743 Jan 01, 2023
We utilize deep reinforcement learning to obtain favorable trajectories for visual-inertial system calibration.

Unified Data Collection for Visual-Inertial Calibration via Deep Reinforcement Learning Update: The lastest code will be updated in this branch. Pleas

ETHZ ASL 27 Dec 29, 2022
Select, weight and analyze complex sample data

Sample Analytics In large-scale surveys, often complex random mechanisms are used to select samples. Estimates derived from such samples must reflect

samplics 37 Dec 15, 2022