Source code for "Pack Together: Entity and Relation Extraction with Levitated Marker"

Overview

PL-Marker

Source code for Pack Together: Entity and Relation Extraction with Levitated Marker.

Quick links

Overview

In this work, we present a novel span representation approach, named Packed Levitated Markers, to consider the dependencies between the spans (pairs) by strategically packing the markers in the encoder. Our approach is evaluated on two typical span (pair) representation tasks:

  1. Named Entity Recognition (NER): Adopt a group packing strategy for enabling our model to process massive spans together to consider their dependencies with limited resources.

  2. Relation Extraction (RE): Adopt a subject-oriented packing strategy for packing each subject and all its objects into an instance to model the dependencies between the same-subject span pairs

Please find more details of this work in our paper.

Setup

Install Dependencies

The code is based on huggaface's transformers.

Install dependencies and apex:

pip3 install -r requirement.txt
pip3 install --editable transformers

Download and preprocess the datasets

Our experiments are based on three datasets: ACE04, ACE05, and SciERC. Please find the links and pre-processing below:

  • CoNLL03: We use the Enlish part of CoNLL03
  • OntoNotes: We use preprocess_ontonotes.py to preprocess the OntoNote 5.0.
  • Few-NERD: The dataseet can be downloaed in their website
  • ACE04/ACE05: We use the preprocessing code from DyGIE repo. Please follow the instructions to preprocess the ACE05 and ACE04 datasets.
  • SciERC: The preprocessed SciERC dataset can be downloaded in their project website.

Pre-trained Models

We release our pre-trained NER models and RE models for ACE05 and SciERC datasets on Google Drive/Tsinghua Cloud.

Note: the performance of the pre-trained models might be slightly different from the reported numbers in the paper, since we reported the average numbers based on multiple runs.

Training Script

Train NER Models:

bash scripts/run_train_ner_PLMarker.sh
bash scripts/run_train_ner_BIO.sh
bash scripts/run_train_ner_TokenCat.sh

Train RE Models:

bash run_train_re.sh

Quick Start

The following commands can be used to run our pre-trained models on SciERC.

Evaluate the NER model:

CUDA_VISIBLE_DEVICES=0  python3  run_acener.py  --model_type bertspanmarker  \
    --model_name_or_path  ../bert_models/scibert-uncased  --do_lower_case  \
    --data_dir scierc  \
    --learning_rate 2e-5  --num_train_epochs 50  --per_gpu_train_batch_size  8  --per_gpu_eval_batch_size 16  --gradient_accumulation_steps 1  \
    --max_seq_length 512  --save_steps 2000  --max_pair_length 256  --max_mention_ori_length 8    \
    --do_eval  --evaluate_during_training   --eval_all_checkpoints  \
    --fp16  --seed 42  --onedropout  --lminit  \
    --train_file train.json --dev_file dev.json --test_file test.json  \
    --output_dir sciner_models/sciner-scibert  --overwrite_output_dir  --output_results

Evaluate the RE model:

CUDA_VISIBLE_DEVICES=0  python3  run_re.py  --model_type bertsub  \
    --model_name_or_path  ../bert_models/scibert-uncased  --do_lower_case  \
    --data_dir scierc  \
    --learning_rate 2e-5  --num_train_epochs 10  --per_gpu_train_batch_size  8  --per_gpu_eval_batch_size 16  --gradient_accumulation_steps 1  \
    --max_seq_length 256  --max_pair_length 16  --save_steps 2500  \
    --do_eval  --evaluate_during_training   --eval_all_checkpoints  --eval_logsoftmax  \
    --fp16  --lminit   \
    --test_file sciner_models/sciner-scibert/ent_pred_test.json  \
    --use_ner_results \
    --output_dir scire_models/scire-scibert

Here, --use_ner_results denotes using the original entity type predicted by NER models.

TypeMarker

if we use the flag --use_typemarker for the RE models, the results will be:

Model Ent Rel Rel+
ACE05-UnTypeMarker (in paper) 89.7 68.8 66.3
ACE05-TypeMarker 89.7 67.5 65.2
SciERC-UnTypeMarker (in paper) 69.9 52.0 40.6
SciERC-TypeMarker 69.9 52.5 40.9

Since the Typemarker increase the performance of SciERC but decrease the performance of ACE05, we didn't use it in the paper.

Citation

If you use our code in your research, please cite our work:

@article{ye2021plmarker,
  author    = {Deming Ye and Yankai Lin and Maosong Sun},
  title     = {Pack Together: Entity and Relation Extraction with Levitated Marker},
  journal   = {arXiv Preprint},
  year={2021}
}
Owner
THUNLP
Natural Language Processing Lab at Tsinghua University
THUNLP
PFFDTD is an open-source FDTD simulator for 3D room acoustics

PFFDTD is an open-source FDTD simulator for 3D room acoustics

Brian Hamilton 34 Nov 24, 2022
This repository contains the DendroMap implementation for scalable and interactive exploration of image datasets in machine learning.

DendroMap DendroMap is an interactive tool to explore large-scale image datasets used for machine learning. A deep understanding of your data can be v

DIV Lab 33 Dec 30, 2022
Code and Datasets from the paper "Self-supervised contrastive learning for volcanic unrest detection from InSAR data"

Code and Datasets from the paper "Self-supervised contrastive learning for volcanic unrest detection from InSAR data" You can download the pretrained

Bountos Nikos 3 May 07, 2022
Implementation of " SESS: Self-Ensembling Semi-Supervised 3D Object Detection" (CVPR2020 Oral)

SESS: Self-Ensembling Semi-Supervised 3D Object Detection Created by Na Zhao from National University of Singapore Introduction This repository contai

125 Dec 23, 2022
Unified MultiWOZ evaluation scripts for the context-to-response task.

MultiWOZ Context-to-Response Evaluation Standardized and easy to use Inform, Success, BLEU ~ See the paper ~ Easy-to-use scripts for standardized eval

Tomáš Nekvinda 38 Dec 13, 2022
This package implements the algorithms introduced in Smucler, Sapienza, and Rotnitzky (2020) to compute optimal adjustment sets in causal graphical models.

optimaladj: A library for computing optimal adjustment sets in causal graphical models This package implements the algorithms introduced in Smucler, S

Facundo Sapienza 6 Aug 04, 2022
"Moshpit SGD: Communication-Efficient Decentralized Training on Heterogeneous Unreliable Devices", official implementation

Moshpit SGD: Communication-Efficient Decentralized Training on Heterogeneous Unreliable Devices This repository contains the official PyTorch implemen

Yandex Research 21 Oct 18, 2022
Awesome-google-colab - Google Colaboratory Notebooks and Repositories

Unofficial Google Colaboratory Notebook and Repository Gallery Please contact me to take over and revamp this repo (it gets around 30k views and 200k

Derek Snow 1.2k Jan 03, 2023
Official repository for: Continuous Control With Ensemble DeepDeterministic Policy Gradients

Continuous Control With Ensemble Deep Deterministic Policy Gradients This repository is the official implementation of Continuous Control With Ensembl

4 Dec 06, 2021
RM Operation can equivalently convert ResNet to VGG, which is better for pruning; and can help RepVGG perform better when the depth is large.

RMNet: Equivalently Removing Residual Connection from Networks This repository is the official implementation of "RMNet: Equivalently Removing Residua

184 Jan 04, 2023
A series of Python scripts to access measurements from Fluke 28X meters. Fluke IR Remote Interface required.

Fluke289_data_access A series of Python scripts to access measurements from Fluke 28X meters. Fluke IR Remote Interface required. Created from informa

3 Dec 08, 2022
Animation of solving the traveling salesman problem to optimality using mixed-integer programming and iteratively eliminating sub tours

tsp-streamlit Animation of solving the traveling salesman problem to optimality using mixed-integer programming and iteratively eliminating sub tours.

4 Nov 05, 2022
Use graph-based analysis to re-classify stocks and to improve Markowitz portfolio optimization

Dynamic Stock Industrial Classification Use graph-based analysis to re-classify stocks and experiment different re-classification methodologies to imp

Sheng Yang 10 Dec 05, 2022
This repository contains the official implementation code of the paper Improving Multimodal Fusion with Hierarchical Mutual Information Maximization for Multimodal Sentiment Analysis, accepted at EMNLP 2021.

MultiModal-InfoMax This repository contains the official implementation code of the paper Improving Multimodal Fusion with Hierarchical Mutual Informa

Deep Cognition and Language Research (DeCLaRe) Lab 89 Dec 26, 2022
CS50x-AI - Artificial Intelligence with Python from Harvard University

CS50x-AI Artificial Intelligence with Python from Harvard University 📖 Table of

Hosein Damavandi 6 Aug 22, 2022
OCR Streamlit App is used to extract text from images using python's easyocr, pytorch and streamlit packages

OCR-Streamlit-App OCR Streamlit App is used to extract text from images using python's easyocr, pytorch and streamlit packages OCR app gets an image a

Siva Prakash 5 Apr 05, 2022
Cross-media Structured Common Space for Multimedia Event Extraction (ACL2020)

Cross-media Structured Common Space for Multimedia Event Extraction Table of Contents Overview Requirements Data Quickstart Citation Overview The code

Manling Li 49 Nov 21, 2022
Code for the paper "Functional Regularization for Reinforcement Learning via Learned Fourier Features"

Reinforcement Learning with Learned Fourier Features State-space Soft Actor-Critic Experiments Move to the state-SAC-LFF repository. cd state-SAC-LFF

Alex Li 10 Nov 11, 2022
Graph Convolutional Networks in PyTorch

Graph Convolutional Networks in PyTorch PyTorch implementation of Graph Convolutional Networks (GCNs) for semi-supervised classification [1]. For a hi

Thomas Kipf 4.5k Dec 31, 2022
Unofficial implementation of Google "CutPaste: Self-Supervised Learning for Anomaly Detection and Localization" in PyTorch

CutPaste CutPaste: image from paper Unofficial implementation of Google's "CutPaste: Self-Supervised Learning for Anomaly Detection and Localization"

Lilit Yolyan 59 Nov 27, 2022